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ABSTRACT

Unsupervised domain adaptation is an open and challenging problem in computer
vision. While existing research shows encouraging results in addressing cross-
domain distribution shift on common benchmarks, they are often limited to test-
ing under a specific target setting. This can limit their impact for many real-world
applications that present different resource constraints. In this paper, we introduce
a simple yet effective framework for anytime domain adaptation that is executable
with dynamic resource constraints to achieve accuracy-efficiency trade-offs under
domain-shifts. We achieve this by training a single shared network using both
labeled source and unlabeled data, with switchable depth, width and input reso-
lutions on the fly to enable testing under a wide range of computation budgets.
Starting with a teacher network trained from a label-rich source domain, we uti-
lize bootstrapped recursive knowledge distillation as a nexus between source and
target domains to jointly train the student network with switchable subnetworks.
Extensive experiments on several diverse benchmark datasets well demonstrate
the superiority of our proposed approach over state-of-the-art methods.

1 INTRODUCTION

Unsupervised Domain Adaptation (UDA) which aims to adapt models trained on a labeled source
domain to an unlabeled target domain has attracted intense attention in recent years. However, recent
successful UDA approaches (Carlucci et al., 2019; Ganin et al., 2016; Li et al., 2020a; Prabhu et al.,
2021; Sun et al., 2019; Tan et al., 2020; Tzeng et al., 2015; 2017) often rely on complicated network
architectures and are limited to testing under a specific target setting, which may not be particularly
suitable for applications across a wide range of platforms that present different resource constraints
(see Figure 1a). While adapting the trained model independently for all testing scenarios in the
target domain with drastically different resource requirements looks like a possible option at the first
glance, it is not efficient and economical, because of time-consuming training and benchmarking
for each of these adaptation settings. Preferably, we want to be able to adjust the model, without
the need of re-training or re-adaptation in the target domain, to run in high accuracy mode when
resources are sufficient and switch to low accuracy mode when resources are limited.

Motivated by this, in this paper, we investigate the problem of anytime domain adaptation where
we have labeled training data from a source domain but no labeled data in the target domain and in
addition testing at a resource setting with wide range of variation (e.g., see Figure 1b). Specifically,
we aim to train a single network using both labeled source and unlabeled target data that can directly
run at arbitrary resource budget while being invariant to distribution shifts across both domains.
This is an extremely relevant problem to address as it will provide a distinct opportunity for a more
practical and efficient domain adaptation to favor different scenarios with different resource budgets.

Recently, anytime prediction (Cai et al., 2019; Huang et al., 2018; Jie et al., 2019) that train a
network to carry out inference under varying budget constraints have witnessed great success in
many vision tasks. However, all these methods assume that the models are trained and tested using
data coming from some fixed distribution and lead to substantially poor generalization when the two
data distributions are different. The twin goals of aligning two domains and operating at different
constrained computation budgets bring in additional challenges for anytime domain adaptation.

To this end, we propose a simple yet effective method for anytime domain adaptation, called AnyDA,
by considering domain alignment in addition to varying both network (width and depth) and input
(resolution) scales to enable testing under a wide range of computation budgets. Such variation
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Figure 1: Instead of conventional adaptation under a specific computation budget, anytime domain adaptation
focuses on training a model using both labeled source and unlabeled target data that can directly run at arbitrary
resource budget in the target domain while being invariant to distribution shifts across both domains.

over width, depth and resolution enables tighter as well as finer coupling of efficiency-computation
trade-off than prior works that only focus on one or two out of the three dimensions (Li et al., 2021a;
Yang et al., 2020; Yu et al., 2019b) for in-domain data. In particular, we adopt a switchable network
where individual subnetworks executable at variable computation budget share parameters with the
full-budget network, known as the supernet. However, inability to leverage on the higher capacity
of complex networks may, in effect, cause such a model to severely underperform, leading to sub-
optimal performance across different resource budgets. To alleviate this, we propose to distill (Ba
& Caruana, 2014; Hinton et al., 2015) richer alignment information from higher capacity models
to networks with limited computation. In particular, our proposed AnyDA, adopts two switchable
networks as teacher and student, that interact and learn from each other. The student subnetworks
are trained recursively to fit the output logits of an ensemble of larger subnetworks of the teacher.
Such recursive distillation within a single network with only adaptive width is shown to improve
generality and reduce performance gaps between high and low capacity networks (Li et al., 2021a).

Starting with the labeled source data, we build the teacher from past iterations of the student net-
work as an exponential moving average (ema) of the student. The bootstrapped teacher provides
the targets to train the student for an enhanced representation. Once the target data is available, the
bootstrapped recursive distillation not only brings the target features close to the source but also
transfers the learned knowledge to a smaller network for efficient inference. Moreover, we harness
the categorical information by leveraging self-supervision through a pseudo-label loss on the student
supernet to ensure a discriminative latent space for the unlabelled target images. Interestingly, with-
out using any component for explicit domain alignment (e.g., a domain discriminator), we show that
our approach trades the performance gracefully with decreasing budgets of the subnetworks. Our
extensive experiments on 4 benchmark datasets show very minimal drop in performance across a
wide range of computation budget (e.g., a maximum drop of only 1.1% is observed when the range
of computation budget gets 8× small during testing in the Office-31 dataset (Saenko et al., 2010)).

Our work forges a connection between two literatures that have evolved mostly independently: any-
time prediction and domain adaptation. This connection allows us to leverage the progress made
in unsupervised representation learning to address the very practical problem of anytime domain
adaptation. To summarize, our key contributions include:

• We introduce a novel approach for anytime domain adaptation, that is executable with
dynamic resource constraints to achieve accuracy-efficiency trade-offs under domain-shifts.
We achieve this by training two networks as teacher and student with switchable depth,
width and input resolutions to enable testing under a wide range of computation budgets.

• We propose a bootstrapped recursive distillation approach to train the student subnets with
the knowledge from the teacher network that not only brings the target features close to the
source but also transfers the learned knowledge to a smaller network for efficient inference.

• We perform extensive experiments on 4 benchmark datasets and demonstrate that AnyDA
achieves superior performance over the state-of-the-art baselines, more significantly at
lower computation budgets. We also include comprehensive ablation studies to depict the
importance of each module of our proposed framework.
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2 RELATED WORKS

Efficient Domain Adaptation. UDA has been dominated by methods minimizing some measure
of domain discrepancy (Shen et al., 2018; Sun & Saenko, 2016; Tzeng et al., 2015) or maximiz-
ing domain confusion (Ganin et al., 2016; Long et al., 2018; Pei et al., 2018; Tzeng et al., 2017)
to generate domain-invariant features. Leveraging image translation (Hoffman et al., 2018; Murez
et al., 2018) or style transfer (Dundar et al., 2020; Zhang et al., 2018) is also another popular trend.
Self-supervised approaches like solving pretext tasks (Carlucci et al., 2019; Mei et al., 2020; Sahoo
et al., 2020; Sun et al., 2019) and contrastive learning (Li et al., 2020a; Prabhu et al., 2021; Sahoo
et al., 2021; Tan et al., 2020) have also recently enjoyed huge success in aligning domains. In spite
of the growing development of traditional UDA (Kouw & Loog, 2019; Zhao et al., 2020), the chal-
lenging problem of efficient domain adaptation remains largely underexplored. Authors in (Jiang
et al., 2020; Li et al., 2021b) have proposed a multi-scale early-exit architecture (Huang et al., 2018)
with DANN (Ganin et al., 2016) as the domain adaptation method. We, on the other hand, employ
recursive knowledge distillation from an ensemble of teacher subnetworks that produces consistency
supervision for the student subnetworks. The proposed approach eliminates the need for resource
hungry spatial augmentation and further reduces the training burden by eliminating the domain dis-
criminator which is unwieldy to train. The contemporary work SlimDA (Meng et al., 2022), attaches
a weight-sharing slimmable network to a domain symmetric adaptation network (SymNet) (Zhang
et al., 2019b). The stochastic distillation uses an empirical confidence score for the subnets requiring
the bi-classifier of SymNet to be replaced by a tri-classifier. Ours, on the other hand, is model agnos-
tic showing strong transferability across backbones. In addition, unlike early-exit architectures with
varying depth only or SlimDA with varying width only, we train a network with switchable depth,
width and input resolution. To the best of our knowledge, this work is the first attempt to address
efficient domain adaptation under anytime prediction framework with switchable depth, width and
input resolution with domain specific batch normalization.

Anytime Neural Networks. Anytime neural networks (Hu et al., 2019; Jie et al., 2019; Larsson
et al., 2017) are becoming increasingly attractive due to its computational efficiency. While MS-
DNet (Huang et al., 2018) makes early exits to meet varying resource demands, MutualNet (Yang
et al., 2020) trains a single network to achieve accuracy-efficiency tradeoffs at runtime. Skipping
unimportant channels (Chen et al., 2019) and layers (Wang et al., 2018; Wu et al., 2018), dynamic
routing of multiple inference paths (Liu & Deng, 2018; Li et al., 2020b; McGill & Perona, 2017)
and input dependent adaptation (Chen et al., 2020) are investigated for efficient inference on many
applications. Slimmable networks (Yu et al., 2019b) and it’s variants (Yu & Huang, 2019; Li et al.,
2021a) train a model to support different width multipliers. Adjusting width, depth and kernel sizes
simultaneously to achieve better accuracy-efficiency trade-off is also proposed in (Cai et al., 2019;
Han et al., 2020). Typically, anytime prediction works under the assumption of no distribution shift
between train and test data. While our approach is inspired by these, in this paper, we propose a
framework that provides budget adaptive anytime predictions under change of domains.

Knowledge Distillation. Distilling knowledge by mimicking output (Hinton et al., 2015; Buciluǎ
et al., 2006) and intermediate features (Romero et al., 2014) from an ensemble of teachers or self-
distilling (Furlanello et al., 2018; Ji et al., 2021; Lee et al., 2020; Zhang et al., 2019a) knowledge
from previous iterations have obtained compact models without sacrificing the performance. Recent
works have explored self-supervised learning with knowledge distillation (Caron et al., 2021; Fang
et al., 2021; Tian et al., 2020; Xu et al., 2020) enabling model compression and performance gains
without explicit supervision. However, these works rely on a teacher trained on data from the same
domain while our teacher is bootstrapped from the student that is trained with both source and target
data stabilizing the feature alignment process between the two domains.

3 METHODOLOGY

Anytime domain adaptation aims to achieve better generalization and low inference latency across
different platforms in unlabeled target domain by transferring knowledge from a labelled source
domain. Formally, we have a set of Ns labelled source images Ds = {(xi

s, y
i
s)}

Ns
i=1 and a set of Nt

unlabelled target imagesDt={xi
t}

Nt
i=1, with a common label spaceL. The source and target samples

have different data distributions. We also have a set of n computation budgets B={b1, b2, ..., bn} for
inference with bi < bj when i < j. Our goal is to learn a single domain adaptive model executable
at a wide range of computation budget on the target domain with minimal performance drop.
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Figure 2: Illustration of our approach. We use a teacher-student framework consisting of 2 networks. The
student network Gθstu takes both source and target images as input, while the teacher network Gθtea takes only
target images. Both networks are configured into n subnets with increasing budgets. We recursively distill
knowledge from the teacher network to train the student subnets for anytime domain adaptation and bootstrap
on previous representations with ema update for the teacher network. During inference, only student network
is used by selecting the appropriate subnet adhering to the budget constraints. See Section 3 for more details.

3.1 PRELIMINARIES

Budget Configurations. To make a single network executable at different budgets, we consider
degrees of freedom both at the level of input (resolution) and network (width, depth), denoted by r,
w, and d respectively. r takes positive integral values, while w and d are numbers in the interval
(0, 1]. Let R = {r1, r2, ..., ra},W = {w1, w2, ..., wb}, and D = {d1, d2, ..., dc} denote the sets of
possible values of r, w, and b. Following (Yang et al., 2020; Yu et al., 2019b), given a configuration
tuple <rx, wy, dz>∈ R×W×D we obtain a subnetwork (or subnet) by executing only the first
wy×100% filters and dz×100% blocks in each layer and take input images of rx×rx resolution
consequently utilizing a specific budget bi∈B. Let the set of all subnets for a network G be denoted as
G∗={s1, s2, ..., sn}, where si is a subnet with budget bi. The network with the highest computation
budget executable at the highest width, depth and input resolution is denoted as the supernet, while
the one with the lowests is called the minnet. Rest of the networks are simply addressed as subnet.
We compute the budget in terms of Multiply-Accumulate operations (MAC), following (Li et al.,
2021b), and provide the detailed budget calculation for a given tuple in Table 4 of the Appendix F.

Domain-Specific Switchable Batch Normalization. Independently reducing internal covariate
shift through batch normalization (Ioffe & Szegedy, 2015) for each of the subnets is crucial for
learning conditional information specific to the network configurations (Yu et al., 2019b). Addi-
tionally, batch normalization parameters have been used to encode domain-specific information for
unsupervised domain adaptation (Chang et al., 2019). For these reasons, in AnyDA, we learn batch
normalization statistics individually for each domain as well as for each of the subnets.

3.2 APPROACH OVERVIEW

Figure 2 provides an overview of the proposed approach. We adopt a teacher-student framework
consisting of two switchable networks with the same architecture, namely Gθstu and Gθtea parame-
terized respectively by θstu and θtea, which are configured into n subnets with increasing budgets
following B. The student network is fed with both source and target images, while the teacher net-
work takes only target images. Given an input image, each of the student subnets sstui and teacher
subnets steai predicts probability distributions pstui and pteai over the label space L by utilizing a
maximum budget of bi per prediction. The student supernet, subnets, and minnet are trained using
supervised learning on the source data. For target data, we propose a bootstrapped recursive dis-
tillation approach to train the student subnets with knowledge obtained from the teacher network.
Specifically, the student minnet is trained to match its output with the average prediction of the
teacher subnets, while the student subnets are trained to match their outputs with the prediction of
the teacher supernet. Teacher network parameters are updated as exponential moving average of
that of the student network. The teacher network only gets target data as input and provides the
cross-domain knowledge essential for domain alignment to the lower computation budget student
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networks. Additionally, to ensure a discriminative latent space for the unlabelled target images, we
harness the categorical information by leveraging self-supervision through a pseudo-label loss on
the student supernet. We now describe each of our proposed components individually in detail.

3.3 ANYTIME DOMAIN ADAPTATION

Bootstrapped Recursive Distillation. Self-distillation (Caron et al., 2021) leverages multiple views
of the same input to train a student network to match the output of a teacher network. To this end,
we propose a recursive distillation learning paradigm where we emulate multiple views of an input
through the outputs of the budgeted subnets. Each of the individual subnets encodes unique infor-
mation specific to the configured width, depth and resolution providing us with diverse knowledge
for a given input. For each of the subnets in Gθstu∗ and Gθtea∗ the predicted logits are normalized
with softmax for any input x to output a probability distribution over the label space L as follows:

p
stu(i)
j =

exp(s
stu(i)
j (x)/τstu)∑|L|

l=1 exp(s
stu(l)
j (x)/τstu)

p
tea(i)
j =

exp(s
tea(i)
j (x)/τtea)∑|L|

l=1 exp(s
tea(l)
j (x)/τtea)

∀i ∈ L (1)

where, sstuj and steaj are any subnets in Gθstu∗ and Gθtea∗ respectively. τstu, τtea > 0 are tempera-
ture parameters controlling the sharpness of the output distributions. We allow the student network
to observe data from both source and target domain while the teacher network sees data from target
only. This is crucial to alleviate the distribution shift by encouraging “target-to-source” correspon-
dences for distillation from the teacher to the student. Ensemble of teacher networks is shown to
generate more accurate and general soft-labels for distillation (Shen et al., 2019; Shen & Savvides,
2020). So, we consider the average prediction of the teacher subnets stea2 to stean−1 as a representative
of the diverse knowledge learned by them. Additionally, this reduces the effect of noisy subnets
while distilling. The average prediction is obtained by averaging the logits and then softmaxing.
Now, for a target image xt ∈ Dt, let the corresponding softmaxed logits from the student subnets
be {pstut1 , pstut2 , ..., pstutn }, the same from the teacher subnets be {pteat1 , pteat2 , ..., pteatn } and pteatavg be the
average prediction of the subnets stea2 to stean−1. We formulate the recursive distillation loss as,

Lrd(xt) = H(pstut1 , pteatavg) +

n−1∑
i=2

H(pstuti , pteatn ) (2)

where, H(a, b) = −
∑|L|

l=1 a
(l) log(b(l)) is cross-entropy loss and is minimized with respect to stu-

dent parameters θstu only. The first term in Eqn. 2 trains student minnet to mimic average prediction
of teacher subnets which helps to gain noise robustness using the ensemble especially when distill-
ing to very low capacity networks. The second term encourages student subnets to mimic teacher
supernet on target data, enabling a recursive flow of knowledge. The teacher parameters θtea are
updated as: θtea ← λθtea + (1 − λ)θstu, where λ represents the momentum hyperparameter. The
teacher network is maintained as exponential moving average of historical parameters over training
iteration allowing to bootstrap on previous representations, as in (Grill et al., 2020).

Target Pseudo-Labels. While the bootstrapped recursive distillation loss helps in learning low bud-
get networks with simultaneous domain alignment, relying only on the source domain for categorical
information can be sub-optimal for the target domain. Therefore, we use a pseudo-label loss on the
student network to harness categorical information from the target domain through self-supervision.
For a target image xt ∈ Dt the pseudo-label loss is formulated as:

Lpl(xt) = 1(max(pstutn ) ≥ τpl)H(ŷt, p
stu
tn ), τpl : pseudo-label threshold (3)

where, ŷt = argmax(pstutn ) is the pseudo-label obtained from the student supernet sstun for xt.

Optimization. While training, we follow the sandwich rule (Yu & Huang, 2019) for better conver-
gence behavior and overall performance. Specifically, in every iteration, we train the student minnet,
supernet, and two randomly selected subnets. This is inspired from the fact that performances at all
budget are bounded by that of the model at smallest budget (minnet) and largest budget (supernet).
Thus, optimizing performance lower bound and upper bound can implicitly optimize all subnetworks
of different capacities. Additionally, this is computationally more efficient compared to training all
the subnetworks in each iteration. Formally, at a given iteration with mini-batches βs ⊂ Ds and
βt ⊂ Dt, we optimize the following loss function:

Ltotal(βs, βt) = Exs∈βs
λclsLcls + Ext∈βt

(λrdLrd + λplLpl) (4)
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where, λcls, λrd, and λpl are loss coefficients. Lcls denotes the cross-entropy loss on labeled source
images on all the subnets (ref. Figure 2). Also, note that because of the sandwich rule, the second
term of Lrd (ref. Eqn. 2) now applies on the two selected subnets only. Following this, the teacher
network parameters are updated using ema in every iteration.

Warm-up using Source Data. Absence of labels in the target domain may quickly make the net-
works learn a degenerate solution if we do not take care with proper initialization (Tzeng et al.,
2017). Additionally, random initialization is prone to provide high-confident noisy pseudo-labels
leading to catastrophic outcomes. Therefore, before training AnyDA with Eqn. 4, we warmup the
student network with the Lcls loss on the source data. Once the warmup is completed, we copy the
learned weights θs to θt to provide the same initialization to both the networks.

Inference. Once the networks are trained, we only use the student network for inference. Given any
computational budget bi ∈ B, we first obtain all possible configuration tuples inR×W×D forming
subnets of budget bi. E.g. in our experimental setup, given a budget constraint of 0.85× 109 MACs,
we have the tuples < 224, 0.9, 0.5> and < 160, 0.9, 1.0> satisfying the requirement. We then test
all of these subnets on a validation set, choose the best performing subnet and report its accuracy.

4 EXPERIMENTS

Datasets. We evaluate the performance of our proposed approach using 4 benchmark datasets,
namely, Office-31 (Saenko et al., 2010), DomainNet (Peng et al., 2019), Office-Home (Venkateswara
et al., 2017) and ImageCLEF-DA (Long et al., 2017). Office-31 contains a total of 4,652 images
belonging to 31 categories from 3 distinct domains: Amazon (A), Webcam (W) and Dslr (D). Do-
mainNet is the largest available benchmark dataset containing images from 6 domains: Infograph
(inf), Quickdraw (qdr), Real (rel), Sketch (skt), Clipart (clp), and Painting (pnt). 600K images are
distributed among 345 categories. Office-Home is a challenging dataset containing images from 4
different domains: Artistic (Ar), Clipart (Cl), Product (Pr), and Real-World images (Rw) belonging
to 65 categories. The ImageCLEF-DA dataset has around 1,800 images belonging to 12 categories
in 3 domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P).

Baselines and Implementation Details. We compare our approach with the following base-
lines: ResNet (He et al., 2016) models with varying depth (ResNet-18 to ResNet-152), Mo-
bileNetV3 (Howard et al., 2019), MSDNet (Huang et al., 2018), REDA (Jiang et al., 2020) equipped
with DANN (Ganin & Lempitsky, 2015) as the domain adaptation method, TCP (Yu et al., 2019a)
and ResNet (18, 34, and 50) trained with knowledge distillation (Ba & Caruana, 2014) from ResNet-
101 as the teacher. We also compare with DDA (Li et al., 2021b). For the baselines and DDA,
we quote the numbers reported in the paper itself except for OfficeHome and ImageCLEF-DA for
which we use the publicly available source code. We use ResNet-50 (He et al., 2016) architecture as
the full network. For budget configuration, we useR = {224, 192, 160, 128},W = {1.0, 0.9}, and
D = {1.0, 0.5}, providing us 16 subnets with computational budgets ranging from roughly 0.2×109
to 2.0 × 109 MACs. We further divide the range of budgets into 8 intervals of equal size. For each
interval, the best performing subnet is used to report the accuracy. Warmup using source data was
done on top of networks initialized with Imagenet pretrained weights. In addition, following the
general practice we use a validation set to obtain best hyperparameters. Additional implementation
details including hyperparameter values are provided in the Appendix F.

4.1 RESULTS AND ANALYSIS

Office-31. Figure 3a shows the results on the Office-31 dataset. AnyDA achieves the best average
accuracy of 85.1% at a budget of 0.7 × 109 MACs. Baseline methods specifically tailored for
efficient domain adaptation (e.g., DDA and REDA) outperform other baselines like MSDNet, and
ResNets. While comparing with DDA and REDA (Li et al., 2021b) over the same budget range,
AnyDA performs significantly better, specifically for low-budget networks. E.g., we outperform
DDA by almost 8% at a budget of 0.2× 109 MACs, while REDA by 6.9%. AnyDA’s performance,
unlike others, does not experience a drastic drop when the available budget is decreased. This
behavior clearly shows that our bootstrapped recursive distillation is not only able to train robust
low-capacity models, but also ensures simultaneous domain alignment.

DomainNet. On the large-scale DomainNet dataset (ref Figure 3b) also, AnyDA outperforms DDA
and other baselines. Similar to Office-31, AnyDA does especially well at very low computation
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(a) Office-31 (b) DomainNet (c) Office-Home (d) ImageCLEF-DA

Figure 3: Performance on Office-31, DomainNet, Office-Home and ImageCLEF-DA . The plots compare
the average accuracy vs budget curves of our proposed approach, AnyDA with different baselines. AnyDA
clearly outperforms the compared methods in all the budget configurations on all the datasets. Specifically
in the low budget settings, we observe the maximum improvement showing the effectiveness of AnyDA in
learning domain adaptive networks for very low-resource applications. Best viewed in color.

Table 1: Performance on DomainNet. We show the task-wise accuracy on the DomainNet dataset for 30
adaptation tasks, where in each sub-table, the columns are the source domains and the rows are the target
domains. Our proposed AnyDA outperforms DDA (w/ DANN) at both the compared budgets.

ResNet-50: 0.7 × 109 macs ResNet-152: 1.6 × 109 macs

DDA(S4) clp inf pnt qdr rel skt Avg DDA(S7) clp inf pnt qdr rel skt Avg
clp - 15.5 33.8 18.5 47.0 36.2 30.2 clp - 16.8 36.3 20.7 51.3 39.0 32.8
inf 28.2 - 26.0 8.4 38.0 21.1 24.3 inf 29.4 - 28.1 10.0 43.8 23.0 26.9
pnt 37.6 15.9 - 8.9 48.1 31.8 28.5 pnt 40.4 17.2 - 10.9 52.1 33.9 30.9
qdr 21.5 2.8 7.4 - 15.1 13.0 11.9 qdr 21.2 3.0 8.4 - 18.6 14.1 13.1
rel 43.4 18.1 41.8 9.4 - 30.7 28.7 rel 46.0 18.7 44.9 11.8 - 33.9 31.1
skt 49.5 16.4 36.6 17.9 47.0 - 33.5 skt 51.1 17.3 40.0 20.5 50.9 - 36.0
Avg 36.0 13.7 29.1 12.6 39.0 26.6 26.2 Avg 37.6 14.6 31.5 14.8 43.3 28.8 28.4

ResNet-50: 0.7 × 109 macs ResNet-50: 1.6 × 109 macs

AnyDA clp inf pnt qdr rel skt Avg AnyDA clp inf pnt qdr rel skt Avg
clp - 33.2 38.4 21.2 48.8 49.3 38.2 clp - 33.4 40.6 23.1 51.7 53.1 40.4
inf 13.1 - 14.2 2.5 17.1 13.3 12.0 inf 18.2 - 17.1 3.8 21.3 17.6 15.6
pnt 32.8 31.0 - 6.6 46.4 38.6 31.1 pnt 37.8 33.2 - 8.2 51.2 42.9 34.7
qdr 13.7 5.6 6.6 - 8.1 16.4 10.1 qdr 12.2 4.8 4.8 - 7.6 14.2 8.7
rel 47.9 44.7 51.5 13.7 - 48.5 41.3 rel 51.9 47.2 54.2 16.2 - 52.9 44.5
skt 35.4 24.3 32.3 13.4 34.7 - 28.0 skt 41.8 26.1 38.9 17.5 39.6 - 32.8
Avg 28.6 27.8 28.6 11.5 31.0 33.2 26.8 Avg 32.4 28.9 31.1 13.8 34.3 36.1 29.4

budgets. Our average accuracy at the lowest budget of 0.25 × 109 MACs is 24.4% which is about
6.6% more than DDA at a slightly higher lowest budget of 0.3× 109 MACs. It is worth noting that
DDA used 7 layered ResNet-152 model in its S7 variant as the backbone while AnyDA uses a lower
complexity backbone, ResNet-50 with comparatively weak representation learning ability. Simi-
larly, when compared to the next best approach (MobileNet-v3) available at the same lowest budget
as ours, the performance is better by 7.4%. At the highest budget (1.6 × 109 MACs) available for
DDA, AnyDA achieves 1% improved performance of 29.4% over it. The performance improvement
is continued as more computation in the anytime framework is available and reaches 29.7% at our
highest budget of 2.0× 109 MACs. To better illustrate that AnyDA can effectively enhance domain
alignment at the highest budgets of DDA S4 and S7 architectures, we provide a finegrained compar-
ative analysis on all 30 tasks of DomainNet in Table 1. It can be seen that even though AnyDA uses
a low capacity backbone (ResNet-50 vis-a-vis ResNet-152), our approach can exploit the goodness
of the higher subnetworks for domain alignment in a resource constrained scenario.

Office-Home. In Office-Home (ref Figure 3c), we again outperform DDA for all the budgets. Our
average accuracy at the lowest budget of 0.25 × 109 MACs outperforms DDA by 30%, while by
7.9% at 0.7× 109 MACs of budget, and achieves a best accuracy of 64% at 2.0× 109 MACs.

ImageCLEF-DA. Our performance in ImageCLEF-DA (ref Figure 3d) is also in accordance with
the trend in the rest of the datasets. We outperform DDA in all budgets significantly. At the lowest
budget of 0.25 × 109 MACs AnyDA is better by an absolute margin of 23.1%, while by 4.7% at
0.7 × 109 MACs. As in other datasets, the performance of AnyDA is minimally hampered with
decreasing computation budgets, showing the efficacy of our approach for low-capacity networks.

4.2 COMPARISON WITH SLIMDA

We also compared our performance with SlimDA (Meng et al., 2022), most close to ours. Due to
unavailability of the SlimDA code at the time of submission, we could compare the performance on
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Table 2: Comparision with SlimDA. We show average accuracy for Office-31, Office-Home and
ImageCLEF-DA. AnyDA consistently shows better performance compared to SlimDA on 4 different budgets.

Office-31 Office-Home ImageCLEF-DA
Flops 1× 1

2×
1
4×

1
10× 1× 1

2×
1
4×

1
8× 1× 1

2×
1
4×

1
8×

SlimDA (Meng et al., 2022) 86.3 87.7 87.4 87.5 68.4 68.0 67.8 67.4 88.9 88.7 88.8 88.4

AnyDA 88.2 87.9 87.8 87.2 68.7 68.1 68.1 67.5 90.4 89.2 89.5 89.2

the three datasets Office-31, Office-Home and ImageCLEF-DA on which the reported results were
obtained. SlimDA builds on top of more recent and stronger domain adaptation approach Sym-
Net (Zhang et al., 2019b) by adding stochastic ensemble distillation with it. For a fair comparison,
we also adopted AnyDA with the SymNet architecture by simply equipping the ResNet50 back-
bone of SymNet with switchable depth, width and input resolution and employing the bootstrapped
recursive distillation therein without needing to change the original biclassifier design of SymNet.
Table 2, shows AnyDA is better than SlimDA in all datasets across various computation budgets
while being competitive at lowest compared budget of 1

10× on Office-31. On the other hand, the
full budget comparison shows an absolute improvement of 1.9% on Office-31 dataset. This experi-
ment shows the easy adaptability of AnyDA with other sophisticated domain adaptation frameworks
towards efficient domain adaptation under budget constraints.

We also combine SymNet (Zhang et al., 2019b), with anytime prediction (US-Net (Yu & Huang,
2019) with slimmable width, depth and resolution as ours) naively in three possible baseline settings
on Office-31 and Office-Home to verify the performance of directly combining existing domain
adaptation and anytime prediction techniques. Table 3 in Appendix A shows that a direct combina-
tion of these two existing methods fails miserably for the lower budget subnets even with additional
pseudo-labeling added on top of it for harnessing categorical information from the target domain.
This clearly corroborates the importance of the proposed components in AnyDA towards learning a
robust network executable at different computation budget as well as alleviating the domain shift.

4.3 ABLATION STUDIES

We perform ablation studies on Office-31 dataset (unless otherwise specified) to test the effectiveness
of different components of AnyDA and different variations of bootstrapped recursive distillation.

Training Supernet with Only Source Data. This ablation tests the naive scenario of employing a
single high capacity network for anytime domain adaptation with a goal to set a lower bound of the
performance. We train only the supernet (a ResNet-50 model only) with source data and test it in
all the computation budgets in the target domain. Figure 6y shows that the performance is poor as
expected. Especially, the lower subnets suffer the most with fluctuations in the performance.

Effect of Teacher Selection for Distillation. We verify the advantage of recursive distillation by
comparing with two other variants. In the first variation, the recursive distillation loss encourages all
student subnets including the minnet to mimic the highest capacity teacher supernet by modifying
the first term in Eqn. 2 from H(pstut1 , pteatavg) to H(pstut1 , pteatn ). From Figure 6z, we see consistent
performance drop across all budgets by around 1% compared to the proposed approach where the
minnet learns from the average of the teacher subnets. We conjecture that the progressively lower
capacity and thus continually increasing gap of the student subnets with the teacher supernet can
cause convergence hardship. In the second variation, we study the effect of mimicking the average of
the soft logits of all the teacher subnets, supernet and minnet. Figure 6aa shows that the performance
drops by around 2% consistently across all computation budgets showing that our proposed recursive
distillation strategy makes better use of the knowledge from multiple teacher subnets.

Training by Non-Recursive Distillation. Here, we experiment with non-recursive distillation
where each student subnet learns from its companion subnet in the teacher. This is done by en-
couraging each pstuti to mimic the corresponding soft logit pteati from the teacher resulting in Lrd(xt)
to be

∑n
i=1 H(pstuti , pteati ) in Eqn. 2. As seen in Figure 6ab, this results in a drastic performance drop

especially for the lower subnets showing the importance of the flow of information progressively
from the top of the ladder to the bottom. Interestingly, the importance of recursive distillation can
be appreciated from the fact that without it, the performance drops even below the naive approach
of training a single supernet with only source data (compare with Figure 6y). Another variant of
non-recursive learning is not to learn from the bootstrapped teacher, instead try to mimic its nearest
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(a) Source CE on supernet (b) Highest capacity (c) Average (d) Non-recursive (e) ID w/o bootstrapping

(f) ID w/ bootstrapping (g) w/ KL Divergence loss (h)w/oDomainSpecific BN (i) w/ Domain Discriminator (j) w/o PL loss.

Figure 4: Ablation Studies on Office-31. The red line shows the accuracy curve for AnyDA while the black
line corresponds to that of the baseline with specific ablation setting. AnyDA outperforms the corresponding
baseline in all settings showing its effectiveness in anytime domain adaptation. Best viewed in color.

superior subnet from the student itself. Such inplace distillation (ID) works well with no distribution
shift (Yu & Huang, 2019). However such a strategy (ID w/o bootstapping) naturally fails for the cur-
rent task as it does not use the information from supervised source data warmup. Thus, Figure 6ac
shows significant performance drop across all budgets. A fairer comparison would be to employ the
teacher for inference which starting with source data warmup updates itself by exponential moving
average of the student weights. However, Figure 6ad shows that even such an inplace distillation
with bootstapping (ID w/ bootstapping) does not also work well for anytime domain adaptation.

Ablation on Distillation Loss. We investigate the effectiveness of cross-entropy loss (ref. Eqn. 2) by
replacing it with KL Divergence loss traditionally used in knowledge distillation. Figure 6ae shows
that training with cross-entropy loss surpasses the performance of training with KL Divergence loss
by a high margin especially for the lower subnets (around 1.6 % average accuracy drop in minnet).

Ablation on Batch Normalization. Using batch normalization is crucial for better convergence
of both domain adaptation (Chang et al., 2019) as well as slimmable networks (Yu et al., 2019b).
We ran a variant of AnyDA where switchable batch normalization layers were used for the different
subnets but these were not different for the source and target domain data. The performance de-
graded by roughly 1% across all computation budgets on average (ref. Figure 6af). We also tried
using a single domain-specific batch-normalization for all the subnets but the testing accuracy was
extremely poor. These results help us conclude the need for both domain as well as subnet specific
batch normalization to achieve the twin goals of domain generalization and computation efficiency.

Need for Explicit Domain Discriminator. Using domain discriminators to confuse domains has
been a popular choice for domain adaptation. However, our experiments in Figure 4i show that in
anytime setting, adding an explicit domain discriminator (Ganin & Lempitsky, 2015) may not offer
any advantage, rather the presence of many subnetworks and as a result, multi-scale features can
deteriorate the discriminability of the framework.

Role of Pseudo-Labeling. We remove the pseudo-label loss Lpl and observe that AnyDA without
target pseudo-labels decreases the performance by more than 1% on average (ref. Figure 4j) indicat-
ing the advantage of pseudo-labeling in enhancing discriminability by successfully leveraging label
information from target domain. Additional results and analysis are included in the Appendix G.

5 CONCLUSION

In this paper, we introduce a novel approach for anytime domain adaptation by considering do-
main alignment with switchable depth, width and input resolutions to achieve accuracy-efficiency
trade-offs in the target domain for different resource constraints. In particular, we adopt a teacher-
student framework with bootstrapped recursive distillation to bring the target features close to the
source and also to transfer the learned knowledge for efficient inference. We also leverage self-
supervision via pseudo-labeling on the student supernets to ensure a discriminative latent space for
the unlabelled target images. We demonstrate the effectiveness of our proposed approach on four
benchmark datasets, outperforming several competing methods.
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A COMPARISON WITH NAIVE COMBINATION OF ANYTIME PREDICTION
AND DOMAIN ADAPTATION

In Table 3, we combine one existing state-of-the-art domain adaptation (DA) method, namely
SymNet (Zhang et al., 2019b), with anytime prediction (AP) (US-Net (Yu & Huang, 2019) with
slimmable width, depth and resolution as ours) naively in three settings: (1) Domain adaptation +
Anytime prediction (inference only): in this experiment, we first train a network using the SymNet
domain adaptation method. Once trained, we used the adapted model directly for anytime inference
to obtain its performance at various computation budgets on the target domain. (2) Domain adap-
tation + Anytime prediction (w/ Pseudo-labeling): in this experiment, similar to point (1) above,
we obtain an adapted network using the SymNet domain adaptation technique on source and target
data. After that, we further train the network in an anytime fashion using US-Net on the target data
using self-supervision through pseudo-labels (PL). Note that since the target data is unlabeled, we
need to use pseudo-labels to train on them using existing anytime networks. (3) Anytime prediction
+ Domain Adaptation: in this experiment, we first train a network for anytime prediction on the
labeled source data. Then, we train it using the SymNet domain adaptation approach. We perform
the above experiments on Office-31 and Office-Home datasets and report the results in the tables
below. We compare the performance with our proposed approach AnyDA using the same SymNet
backbone network for a fair comparison.

Table 3: Comparison of AnyDA with naive combinations of anytime prediction and domain adaptation
on Office-31 and Office-Home. DA: Domain Adaptation, AP: Anytime Prediction, PL: Pseudo-Labeling.
We use SymNet backbone for all the experiments.

Office-31 Office-Home
Flops 1× 1

2×
1
4×

1
10× Avg 1× 1

2×
1
4×

1
10× Avg

DA + AP (inference only) 86.4 35.7 31.8 30.0 46.0 62.8 24.5 22.9 20.8 32.8

DA + AP (w/ PL) 87.9 43.6 38.5 37.7 51.9 62.7 31.9 28.4 27.6 37.7

AP + DA 73.6 46.3 43.2 40.0 50.8 56.5 47.0 35.6 32.2 42.8

AnyDA (ours) 88.2 87.9 87.8 87.2 87.8 68.7 68.1 68.1 67.5 68.1

We have the following observations from Table 3, (1) DA + AP (inference only): simply performing
anytime inference on a domain adapted model performs poorly as compared to AnyDA even when
using the full network with the highest budget (1.8% lower in Office-31, 5.9% lower in Office-
Home) and fails miserably for the lower budget subnets (e.g. 57.2% lower in Office-31, 46.7%
lower in Office-Home in the lowest budget configuration); (2) DA + AP (w/ PL): as can be seen,
the performance improves as compared to point (1) because of the additional anytime training on
the target data. But, the the huge drop in performance from the highest budget network to the
lower budget subnets is still significant (e.g. 49.5% and 39.9% lower than AnyDA in the lowest
budget network); (3) While this variation performs better at lower budgets, the performance at the
highest budget is lower than the other two variants, showing that anytime training without exploiting
target data can give a poor initialization for anytime domain adaptation. Our approach outperforms
AP+DA variant by 14.6% and 12.2% at the highest budget, while significantly outperforming it by
more than 30% at the lower budgets for the Office-31 dataset. Similar observations can be made in
the Office-Home dataset as well. To summarize, all the findings above corroborate the importance
of the proposed components in AnyDA towards learning a robust network executable at different
computation budget as well as alleviating the domain shift.
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B PERFORMANCE USING LARGER BACKBONE

Figure 5: Performance on Office-
31. Plots compare the average accu-
racy vs budget curves for AnyDA using
ResNet-101 backbone, with two other
baselines. Best viewed in color.

In Figure 5, we perform additional experiments using ResNet-
101 on Office-31 dataset in order to show the effectiveness of
our approach in larger backbones. We train DDA using the
largest available supported backbone of S7. As can be seen,
AnyDA achieves the best average accuracy of 86.4% at a bud-
get of 3.9×109 MACs. At the highest comparable budget with
DDA of 1.6 × 109 MACs, AnyDA significantly outperforms
by 4.2%. AnyDA’s performance, unlike others, does not ex-
perience a drastic drop when the available budget is decreased.
The improvement obtained at the lower budgets is even signifi-
cantly more, e.g., at the corresponding lowest comparable bud-
gets, AnyDA outperforms DDA by 16.2% at 0.3× 109 MACs
and ResNet by 5.9% at 0.9×109 MACs. This behavior clearly
shows that our bootstrapped recursive distillation is not only
able to train robust low-capacity models, but also ensures si-
multaneous domain alignment with larger backbones.

C FEATURE VISUALIZATION UNDER DIFFERENT BUDGETS

Figure 6 shows the t-SNE visualizations on four adaptation tasks (A→W, D→A, A→D, and D→W)
from the Office-31 dataset. The figure shows the clustering of the target features at various computa-
tion budget subnets from the supernet in the left to the minnet in the right for AnyDA. As can be seen
from Figure 6, the clustering is fairly consistent and discriminative across the subnets till the network
with budget 0.6x109 MACs while slightly slackening for the very low budgets (after 5th column),
showing the effectiveness of the bootstrapped recursive distillation in learning discriminative feature
space at different budget configurations.

2 × 109 1.5 × 109 1 × 109 0.65 × 109 0.6 × 109 0.5 × 109 0.3×109 0.2 × 109

2 × 109 1.5 × 109 1 × 109 0.65 × 109 0.6 × 109 0.5 × 109 0.3×109 0.2 × 109

2 × 109 1.5 × 109 1 × 109 0.65 × 109 0.6 × 109 0.5 × 109 0.3×109 0.2 × 109

2 × 109 1.5 × 109 1 × 109 0.65 × 109 0.6 × 109 0.5 × 109 0.3×109 0.2 × 109

Figure 6: Feature Visualization using t-SNE. Figure shows the t-SNE visualizations of the target features on
four adaptation tasks (A→W, D→A, A→D, and D→W, from top to bottom, respectively) from the Office-31
dataset. The computation budgets in MACs are mentioned under the plots, with supernet at the extreme left,
while minnet at the extreme right. Best viewed in color.

D DISCUSSION ON UTILITY OF ANYTIME DOMAIN ADAPTATION

The focus of our work is on learning a single network which is domain invariant and can be executed
at different computational budgets (MACs) in multiple devices with different budget requirements.
Training a single network with the ability to be executed at different budgets is more feasible and
efficient than training separate networks of corresponding budget configurations. In many practical
applications, once the model is trained, it is an extremely important to perform inference many
times (without retraining) due to highly dynamic deployment environments (train once but inference
many). Additionally, computation cost of training a network for AnyDA is more than that of a
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conventional network due to joint training of all the subnets. However, we follow sandwich rule to
reduce the training-time computation overhead by almost 4 times as compared to forward-passing
through all the subnets. Focussing on both training-time as well as inference-time efficiency is an
interesting research topic, which would be an exciting future work.

E DATASET DETAILS

We evaluate the performance of our approach on four benchmark datasets, namely, (1) Office-
31 (Saenko et al., 2010), (2) Office-Home (Venkateswara et al., 2017), (3) DomainNet (Peng et al.,
2019) and (4) ImageCLEF-DA (Long et al., 2017). Below we provide them in details.

Office-31. This dataset contains 4, 110 images distributed among 31 different categories and col-
lected from three different domains: Amazon (A), Webcam (W) and Dslr (D), resulting in 6 transfer
tasks. Amazon images are collected from merchant websites and possess a clear white background.
Webcam images are captured using a web-cam and are of lower resolution. Dslr images are low-
noise high resolution images. The dataset is imbalanced across domains with 2, 817 images belong-
ing to Amazon, 795 images to Webcam, and 498 images to Dslr, making Amazon a larger domain
as compared to Webcam and Dslr. The dataset is publicly available to download at:
https://people.eecs.berkeley.edu/˜jhoffman/domainadapt/#datasets_code.

Office-Home. This dataset contains 15, 588 images distributed among 65 different classes and
collected from four different domains: Art (Ar), Clipart (Cl), Product (Pr), and RealWorld (Rw),
resulting in 12 transfer tasks. The Art domain has images of paintings, sketches and artistic depic-
tions. The Clipart domain consists of clipart images, while Product domain has clear background
images. The RealWorld domain has regular images captured with a camera. The dataset is split
across domains with 2427 images belonging to Art, 4365 images to Clipart, 4439 images to Product,
and 4347 images to RealWorld. The dataset is publicly available to download at:
http://hemanthdv.org/OfficeHome-Dataset/.

DomainNet. This dataset is one of the largest domain adaptation benchmark datasets available
containing around 0.6 million images. The images are distributed among 345 different categories
and are collected from six different domains: Infograph (inf), Quickdraw (qdr), Real (rel), Sketch
(skt), Clipart (clp), and Painting (pnt), resulting in 30 transfer tasks. We use the cleaned version of
the dataset which is split across the domains with 51, 605 images belonging to Infograph, 172, 500
images to Quickdraw, 172, 947 images to Real, 69, 128 images to Sketch, 48, 129 images to Clipart,
and 72, 266 images to Painting. The dataset is publicly available to download at:
http://ai.bu.edu/M3SDA/.

ImageCLEF-DA. The ImageCLEF-DA dataset is a benchmark dataset used in the ImageCLEF do-
main adaptation challenge of 2014. Following the standard practise, we carried out our experiments
considering the three domains, Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012
(P). There are a total of 12 categories in each domain with each category having around 50 images.
The dataset is publicly available at:
http://imageclef.org/2014/adaptation/.

F IMPLEMENTATION DETAILS

The pseudo-code for the training of AnyDA is shown in Algorithm 1.

Training Details. For Eqn. 1, we use τstu = 0.1 and τtea = 0.04. In Eqn. ??, we use a momentum
hyperparameter value of λ = 0.96. In Eqn. 3, a threshold value of τpl = 0.9 was used for Office-
31 and Office-Home dataset, while τpl = 0.4 for the DomainNet dataset. While in Eqn. 4, we
use λcls = 1, 15, 64, λrd = 1, 1, 0.5 for Office-31, Office-Home and DomainNet, respectively,
λpl = 0.1 for all the datasets. We perform warm-up using source data for 100, 100, 30 epochs for
Office-31, Office-Home and DomainNet, respectively. The proposed approach AnyDA is trained
for 30, 100, 20 epochs, respectively. Different input configurations are handled by our network
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Algorithm 1 The training pseudocode for AnyDA
Data: source data Ds and target data Dt, hyperparameters
Networks: Student network Gθstu∗ = {sstu1 , sstu2 , ..., sstun } and Teacher network Gθtea∗ =
{stea1 , stea2 , ..., stean }

1: warmup the networks Gθstu∗ using source data Ds

2: θtea = θstu
# load mini-batch and iterate over dataloader

3: for s, t in loader do
4: obtain predictions ptitea for all steai in Gθtea∗
5: compute pteatavg

# Sandwich rule
6: stu subnets← minnet, two randomly sampled subnets, supernet from Gθstu∗

# Iterate over the student subnets
7: for sstui in stu subnets do
8: obtain predictions pstusi , pstuti
9: compute cross-entropy loss for pstusi

10: compute recursive distillation loss for pstuti using H(.)
11: compute pseudo-label loss for pstuti , if sstui is supernet
12: end for
13: compute Lcls, Lrd, Lpl

14: optimize Gθstu using gradient descent
# Update teacher network using ema

15: update teacher network: θtea ← λθtea + (1− λ)θstu
16: end for
17: def H(ps, pt):

# Stop gradient
18: pt = pt.detach()
19: return - (pt ∗ log(ps)).sum(dim=1).mean()

as: depth: for a depth of d, we only execute first d×100% blocks in each layer. E.g. layer-1 of
ResNet-50 has 3 blocks, so for d=0.5, we execute only the first ⌊3×0.5⌋=1 block of layer-1. width:
Similarly, for a width of w, we only execute first w×100% filters/weights for all layers. resolution:
we consider R = {224, 192, 160, 128} which are compatible with convolution kernel size, padding
and strides of ResNet-50 network. Following (Yu & Huang, 2019), we use a single linear layer as
our classifier. Specifically, for a linear layer of shape d × n (n = # classes), given an width scale
of 0.9, the subset weights of shape 0.9d × n is used. We use a per-gpu batch size of 64 (32 source
+ 32 target) for all the experiments. We use a learning rate of 2e-4 for Office-31 and Office-Home,
while 3e-5 for DomainNet. We follow cosine annealing to update the learning rate. We report the
average classification accuracy. We additionally use information maximization on target data as a
regularizer. All the experiments were performed using 4 NVIDIA Tesla V100 GPUs.

Budget Calculation. In Table 4, we show the budget values for all the 16 configuration tuples.
Specific budgets at which our network is executed during inference are not pre-set, instead only
a range of budgets (minimum and maximum) for defining subnets during training is used in our
current work. As can be seen, we obtain 8 intervals of equal size from the 16 configurations. After
training, our trained model (the student network) is executable at various budget configurations. The
goal is to find the best configuration under a particular resource constraint. We achieve this by using
a query table. For example, in ResNet50, we sample network width from {1, 0.9}, network depth
from {1, 0.5} and sample input resolution from {224, 192, 160, 128}. We test all these width-
depth-resolution configurations on a validation set and choose the best one under a given budget
at inference. Since there is no re-training, the whole process is once for all. For handling budgets
that fall outside of this range, one can train a supernet with a very large backbone or by considering
extreme low values of width, depth and resolution: we leave this as an interesting future work.
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Table 4: Budget Calculation. We show the details of all the configuration tuples and their corresponding
budget values. The third column groups the subnetworks having computation budget within a defined range.
We divide the whole computation budget of ResNet-50 into equally spaced 8 ranges of size 0.25 × 109 macs.
If multiple subnetworks come under this range (e.g., two subnetworks denoted by < 1 × 0.9 × 192 > and
<0.5 × 1 × 224> in the first column come in the range of 1 × 109 to 1.25 × 109), then we report the result
given by the best performing subnetwork.

ResNet-50
R xW x D Budget (macs ×109) Budget Range (macs ×109)

224 x 1.0 x 1.0 2.00 (1.75,2.00]

224 x 0.9 x 1.0 1.65 (1.50,1.75]

192 x 1.0 x 1.0 1.50 (1.25-1.50]

192 x 0.9 x 1.0 1.20
(1.00-1.25]

224 x 1.0 x 0.5 1.05

160 x 1.0 x 1.0 1.00
(0.75-1.00]224 x 0.9 x 0.5 0.85

160 x 0.9 x 1.0 0.85

192 x 1.0 x 0.5 0.75

(0.50-0.75]
128 x 1.0 x 1.0 0.65
192 x 0.9 x 0.5 0.60
128 x 0.9 x 1.0 0.55

160 x 1.0 x 0.5 0.50
(0.25, 0.50]160 x 0.9 x 0.5 0.40

128 x 1.0 x 0.5 0.30

128 x 0.9 x 0.5 0.20 (0.00, 0.25]

A→W D→W W→D

A→D D→A W→A

Figure 7: Performance on Office-31. The plots 7a to 7f show the accuracy vs budget curves for all the six
adaptation tasks of the Office-31 dataset.
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Ar→Cl Ar→Pr Ar→Rw

Cl→Ar Cl→Pr Cl→Rw

Pr→Ar Pr→Cl Pr→Rw

Rw→Ar Rw→Cl Rw→Pr

Figure 8: Performance on Office-Home. The plots 8a to 8l show the accuracy vs budget curves for all the
twelve adaptation tasks of the Office-Home dataset.
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Table 5: Performance on DomainNet. We show the task-wise accuracy on the DomainNet dataset for 30
adaptation tasks and for all the 8 budget intervals, where in each sub-table, the column-wise domains are the
source domain and the row-wise domains are the target domain. The corresponding budget values are given
above each of the sub-table. We use ResNet-50 backbone for all our experiments.

0.2 × 109 macs 0.3 × 109 macs

AnyDA clp inf pnt qdr rel skt Avg AnyDA clp inf pnt qdr rel skt Avg
clp - 28.9 34.0 19.8 45.5 46.3 34.9 clp - 29.0 34.7 19.8 45.7 46.3 35.1
inf 11.9 - 12.8 2.2 15.3 11.8 10.8 inf 12.3 - 13.0 2.3 15.9 12.4 11.2
pnt 29.9 28.7 - 5.6 43.6 35.7 28.7 pnt 30.6 28.6 - 5.8 44.1 36.7 29.2
qdr 11.6 3.2 4.8 - 5.6 14.3 7.9 qdr 11.6 4.1 4.6 - 6.3 14.4 8.2
rel 45.2 41.6 48.6 12.7 - 45.1 38.6 rel 45.7 41.7 48.8 12.4 - 45.8 38.9
skt 31.9 21.7 28.4 12.1 32.0 - 25.2 skt 32.9 21.6 28.3 12.2 32.5 - 25.5
Avg 26.1 24.8 25.7 10.5 28.4 30.6 24.4 Avg 26.6 25.0 25.9 10.5 28.9 31.1 24.7

0.7 × 109 macs 1.0 × 109 macs

AnyDA clp inf pnt qdr rel skt Avg AnyDA clp inf pnt qdr rel skt Avg
clp - 33.2 38.4 21.2 48.8 49.3 38.2 clp - 32.9 39.1 23.0 51.1 52.9 39.8
inf 13.1 - 14.2 2.5 17.1 13.3 12.0 inf 16.5 - 16.5 2.9 20.1 16.6 14.5
pnt 32.8 31.0 - 6.6 46.4 38.6 31.1 pnt 36.1 32.2 - 7.4 49.9 42.6 33.6
qdr 13.7 5.6 6.6 - 8.1 16.4 10.1 qdr 12.2 4.4 4.8 - 7.6 14.2 8.6
rel 47.9 44.7 51.5 13.7 - 48.5 41.3 rel 51.4 46.9 54.1 14.9 - 51.9 43.8
skt 35.4 24.3 32.3 13.4 34.7 - 28.0 skt 39.8 25.9 35.0 15.2 38.5 - 30.9
Avg 28.6 27.8 28.6 11.5 31.0 33.2 26.8 Avg 31.2 28.5 29.9 12.7 33.4 35.6 28.6

1.2 × 109 macs 1.5 × 109 macs

AnyDA clp inf pnt qdr rel skt Avg AnyDA clp inf pnt qdr rel skt Avg
clp - 32.9 39.3 23.0 51.0 52.9 39.8 clp - 33.4 39.3 23.3 51.0 52.5 39.9
inf 16.5 - 16.4 2.9 20.1 16.6 14.5 inf 17.3 - 17.4 2.8 20.1 17.3 15.0
pnt 36.1 32.0 - 7.4 49.6 42.6 33.5 pnt 36.2 32.2 - 7.4 49.9 42.7 33.7
qdr 12.4 4.4 4.9 - 7.6 14.2 8.7 qdr 12.4 4.4 4.9 - 7.2 14.3 8.6
rel 50.3 46.6 54.1 14.9 - 51.8 43.5 rel 51.6 46.6 54.5 15.1 - 51.9 43.9
skt 40.3 25.5 34.7 15.2 38.5 - 30.8 skt 40.5 25.2 35.3 15.2 38.9 - 31.0
Avg 31.1 28.3 29.9 12.7 33.4 35.6 28.5 Avg 31.6 28.4 30.3 12.8 33.4 35.7 28.7

1.6 × 109 macs 2.0 × 109 macs

AnyDA clp inf pnt qdr rel skt Avg AnyDA clp inf pnt qdr rel skt Avg
clp - 33.4 40.6 23.1 51.7 53.1 40.4 clp - 33.7 39.9 23.5 51.3 53.8 40.4
inf 18.2 - 17.1 3.8 21.3 17.6 15.6 inf 18.3 - 17.5 3.9 21.7 17.6 15.8
pnt 37.8 33.2 - 8.2 51.2 42.9 34.7 pnt 37.6 33.6 - 8.9 51.8 44.0 35.2
qdr 12.2 4.8 4.8 - 7.6 14.2 8.7 qdr 12.0 4.1 4.8 - 7.4 13.6 8.4
rel 51.9 47.2 54.2 16.2 - 52.9 44.5 rel 52.6 48.1 54.8 16.9 - 53.0 45.1
skt 41.8 26.1 38.9 17.5 39.6 - 32.8 skt 41.9 27.1 39.9 17.9 39.5 - 33.3
Avg 32.4 28.9 31.1 13.8 34.3 36.1 29.4 Avg 32.5 29.3 31.4 14.2 34.3 36.4 29.7
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G ADDITIONAL EXPERIMENTS

Effect of Hyperparameters. We study the effect of the coefficient hyperparameters λrd and λpl.
For Office-31, we consider values of λrd and λpl an order above and below the best value used in
our experiments and show the obtained results in Fig. 9. We observe that λrd = 1.0 and λpl = 0.1
gives the best performance.

λrd λpl

Figure 9: Effect of hyperparameters. The plots show average accuracy vs budget by varying the hyperpa-
rameter values λrd and λpl (ref. Eqn. 5 in main paper) for the Office-31 dataset.

Ablation Studies on OfficeHome. Similar to the main paper, we perform ablation studies on the
OfficeHome dataset, and report all the findings in Fig. 10. For all the cases, AnyDA outperforms the
corresponding ablation setup, which affirms the importance of the proposed bootstrapped recursive
distillation method along with the other components for anytime domain adaptation.

Benefit of Recursive Distillation. It was shown in (Yang et al., 2020) that decreasing the lower
bound of computation budget can result in decrease of the model performance at higher budgets. In
this experiment, we tested by running AnyDA with increased lower bound of the computation from

Source CE on supernet Highest capacity Average Non-recursive

ID w/o bootstrapping ID w/ bootstrapping w/ KL Divergence loss w/o Domain Specific BN

w/o PL loss

Figure 10: Ablation Studies. The plots show average accuracy vs budget curves for different ablation studies
performed on Office-Home dataset. The red line shows the accuracy curve for AnyDA while the black line cor-
responds to that of the baseline with specific ablation setting. Here we observe a similar trend of the individual
ablation studies with those for Office-31 dataset. For Office-Home also, AnyDA outperforms the corresponding
baseline in all settings showing its effectiveness in anytime domain adaptation. Best viewed in color.
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Figure 11: Effect of increasing budget lower bound. Plot shows difference in average accuracy vs budget
curves by increasing the lower bound of budget from 0.2 x 109 macs to 0.55 x 109 macs on Office-31.

0.2× 109 macs to 0.5× 109 macs for Office-31 and studied the performance in Fig. 11. We observe
that the increased budget at lower end of the subnetworks provides a very similar performance with
slight improvements. This shows the effectiveness of the recursive distillation method in learning
robust representations even if we have very low budget subnetworks which can not drag down the
performance of the higher end subnetworks, rather the lower end subnetworks perform almost as
good as the higher end ones.

H BROADER IMPACT

Our research on anytime domain adaptation can help reduce burden of collecting large-scale super-
vised data in many real-world applications by transferring knowledge from auxiliary datasets. At the
same time, it can have a positive impact on many applications that require customization of a single
deep neural network in the target domain to meet the dynamically changing demand. Our research
on anytime domain adaptation can also reduce the memory and power consumption, leading to a
high impact on the environment as AI systems become more prevalent. Potential negative impacts
share many of the pitfalls associated with standard deep learning models such as vulnerability to
adversarial attacks and dataset bias, and lack of interoperability, etc.
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