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Abstract

Partial domain adaptation which assumes that the unknown
target label space is a subset of the source label space has
attracted much attention in computer vision. Despite recent
progress, existing methods often suffer from three key prob-
lems: negative transfer, lack of discriminability and domain
invariance in the latent space. To alleviate the above issues,
we develop a novel ‘Select, Label, and Mix’ (SLM) frame-
work that aims to learn discriminative invariant feature rep-
resentations for partial domain adaptation. First, we present
an efficient “select” module that automatically filters out
the outlier source samples to avoid negative transfer while
aligning distributions across both domains. Second, the “la-
bel” module iteratively trains the classifier using both the la-
beled source domain data and the generated pseudo-labels for
the target domain to enhance the discriminability of the la-
tent space. Finally, the “mix” module utilizes domain mixup
jointly with the other two modules to explore more intrinsic
structures across domains leading to a domain-invariant latent
space for partial domain adaptation. Extensive experiments
on several benchmark datasets demonstrate the superiority of
our proposed framework over state-of-the-art methods.

Introduction
Deep neural networks usually do not generalize well to do-
mains that are not distributed identically to the training data.
Domain adaptation (Csurka 2017; Wang and Deng 2018)
addresses this problem by transferring knowledge from a
label-rich source domain to a target domain where labels
are scarce or unavailable. However, standard domain adap-
tation algorithms often assume that the source and target
domains share the same label space (Ganin and Lempitsky
2015; Gretton et al. 2012; Long et al. 2015, 2018, 2016).
Since large-scale labelled datasets are readily accessible as
source domain data, a more realistic scenario is partial do-
main adaptation (PDA), which assumes that the target label
space is a subset of the source label space, that has received
increasing research attention recently (Bucci, D’Innocente,
and Tommasi 2019; Chen et al. 2019b, 2020; Hu et al. 2019).

Several methods have been proposed to solve partial
domain adaptation by reweighting source samples (Bucci,
D’Innocente, and Tommasi 2019; Chen et al. 2019b, 2020;
Hu et al. 2019; Xu et al. 2019b; Zhang et al. 2018). How-
ever, (1) most of the existing methods still suffer from
negative transfer due to presence of outlier source domain

classes, which cripples domain-wise transfer with untrans-
ferable knowledge; (2) in absence of labels, they often ne-
glect the class-aware information in target domain which
fails to guarantee the discriminability of the latent space; and
(3) given filtering of the outliers, limited number of samples
from source and target domain are not alone sufficient to
learn domain invariant features for such a complex problem.
As a result, a domain classifier may falsely align unlabeled
target samples with samples of a different class in the source
domain, leading to inconsistent predictions.

To address these challenges, we propose a novel end-to-
end Select, Label, and Mix (SLM ) framework for learning
discriminative invariant features while preventing negative
transfer in PDA. Our framework consists of three unique
modules working in concert, i.e., select, label and mix, as
shown in Figure 1. First, the select module facilitates the
identification of relevant source samples preventing the neg-
ative transfer. To be specific, our main idea is to learn a
model (referred to as selector network) that outputs prob-
abilities of binary decisions for selecting or discarding each
source domain sample before aligning source and target dis-
tributions using an adversarial discriminator (Ganin et al.
2016). As these decision functions are discrete and non-
differentiable, we rely on Gumbel Softmax sampling (Jang,
Gu, and Poole 2016) to learn the policy jointly with net-
work parameters through standard back-propagation, with-
out resorting to complex reinforcement learning settings, as
in (Chen et al. 2019b, 2020). Second, we develop an effi-
cient self-labeling strategy that iteratively trains the classi-
fier using both labeled source domain data and generated
soft pseudo-labels for target domain to enhance the discrim-
inabilty of the latent space. Finally, the mix module uti-
lizes both intra-domain and inter-domain mixup regulariza-
tion (Zhang et al. 2017) to generate convex combinations
of pairs of training samples and their corresponding labels
in both domains. The mix strategy not only helps to explore
more intrinsic structures across domains leading to an invari-
ant latent space, but also helps to stabilize the domain dis-
criminator while bridging distribution shift across domains.

Our proposed modules are simple yet very effective which
explore three unique aspects for the first time in partial do-
main adaptation setting in an end-to-end manner. Specif-
ically, in each mini-batch, our framework simultaneously
eliminates negative transfer by removing outlier source sam-
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Figure 1: A conceptual overview of our approach. Our proposed approach adopts three unique modules namely Select, Label and Mix in
a unified framework to mitigate domain shift and generalize the model to an unlabelled target domain with a label space which is a subset
of that of the labelled source domain. Our Select module discards outlier samples from the source domain to eliminate negative transfer of
untransferable knowledge. On the other hand, Label and Mix modules ensure discriminability and invariance of the latent space respectively
while adapting the source classifier to the target domain in partial domain adaptation setting. Best viewed in color.

ples and learns discriminative invariant features by labeling
and mixing samples. Our key contributions include:
• We propose a novel Select, Label, and Mix (SLM ) frame-

work for learning discriminative and invariant feature
representation while preventing intrinsic negative trans-
fer in partial domain adaptation.

• We develop a simple and efficient source sample selec-
tion strategy where the selector network is jointly trained
with the domain adaptation model using backpropagation
through Gumbel Softmax sampling.

• We conduct extensive experiments on four benchmark
datasets, including Office31 (Saenko et al. 2010), Office-
Home (Venkateswara et al. 2017), ImageNet-Caltech,
and VisDA-2017 (Peng et al. 2017) to demonstrate the
superiority of our approach over state-of-the-art methods.

Related Work
Unsupervised Domain Adaptation. Various strategies have
been developed for unsupervised domain adaptation, includ-
ing methods for reducing cross-domain divergence (Gretton
et al. 2012; Long et al. 2015; Shen et al. 2017; Sun and
Saenko 2016), adding domain discriminators for adversar-
ial training (Chen et al. 2019a; Ganin and Lempitsky 2015;
Ganin et al. 2016; Long et al. 2015, 2018, 2016; Pei et al.
2018; Tzeng et al. 2017), and image-to-image translation
techniques (Hoffman et al. 2018; Hu et al. 2018; Murez et al.
2018) (see reviews (Csurka 2017; Wang and Deng 2018)).
Despite remarkable progress, UDA methods assume that la-
bel spaces across source and target domains are identical un-
like the practical problem we consider in this work.
Partial Domain Adaptation. Representative PDA methods
train domain discriminators (Cao et al. 2018a,b; Zhang et al.
2018) with weighting, or use residual correction blocks (Li
et al. 2020; Liang et al. 2020), or use source examples based
on their similarities to target domain (Cao et al. 2019). Most
relevant to our approach is the work in (Chen et al. 2019b,
2020) which uses Reinforcement Learning (RL) for source
data selection in partial domain adaptation. RL policy gradi-
ents are often complex, unwieldy to train and require tech-
niques to reduce variance during training. By contrast, our
approach utilizes a gradient based optimization for relevant

source sample selection which is extremely fast and com-
putationally efficient. Moreover, while prior PDA methods
try to reweigh source samples in some form or other, they
often do not take class-aware information in target domain
into consideration. Our approach instead, ensures discrim-
inability and invariance of the latent space by considering
both pseudo-labeling and cross-domain mixup with sample
selection in an unified framework for PDA.
Self-Training with Pseudo-Labels. Deep self-training
methods that focus on iteratively training the model by us-
ing both labeled source data and generated target pseudo-
labels have been proposed for aligning both domains (In-
oue et al. 2018; Mei et al. 2020; Saito, Ushiku, and Harada
2017; Zhang et al. 2020). Majority of the methods directly
choose hard pseudo-labels with high prediction confidence.
The works in (Zou et al. 2019, 2018) use class-balanced con-
fidence regularizers to generate soft pseudo-labels for un-
supervised domain adaptation that share same label space
across domains. Our work on the other hand iteratively uti-
lizes soft pseudo-labels within a batch by smoothing one-hot
pseudo-label to a conservative target distribution for PDA.
Mixup Regularization. Mixup regularization (Zhang et al.
2017) that train models on virtual examples constructed as
convex combinations of pairs of inputs and labels are re-
cently used to improve the generalization of neural net-
works. A few recent methods apply Mixup, but mainly for
UDA to stabilize domain discriminator (Wu, Inkpen, and El-
Roby 2020; Xu et al. 2019a; Yan et al. 2020) or to smoothen
the predictions (Mao et al. 2019). Our proposed SLM strat-
egy can be regarded as an extension of this line of research
by introducing both intra-domain and inter-domain mixup
not only to stabilize the discriminator but also to guide the
classifier in enriching the intrinsic structure of the latent
space to solve the more challenging PDA task.

Proposed Method
Partial domain adaptation aims to mitigate the domain shift
and generalize the model to an unlabelled target domain with
a label space which is a subset of that of the labelled source
domain. Formally, we define the set of labelled source do-
main samples as Dsource={(xsi , yi)}

NS
i=1 and unlabelled tar-
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Figure 2: Illustration of our proposed framework. Our framework consists of a feature extractor G which maps the images to a common
latent feature space, a classifier network F to provide class-wise predictions, a domain discriminator D to reduce domain discrepancy, and a
selector network H for discarding outlier source samples (“Select”) to mitigate the problem of negative transfer in partial domain adaptation.
Our approach also comprises of two additional modules namely “Label” and “Mix” that works in conjunction with the “Select” module
to ensure the discriminability and domain invariance of the latent space. Given a mini-batch of source and target domain images, all the
components are optimized jointly in an iterative manner. See Section for more details. Best viewed in color.

get domain samples as Dtarget={xt
i}

NT
i=1, with label spaces

Lsource and Ltarget, respectively, where Lsource⊊Ltarget.
NS and NT represent the number of samples in source and
target domain respectively. Let p and q represent the proba-
bility distribution of data in source and target domain respec-
tively. In PDA, we further have p ̸=q and pLtarget ̸=q, where
pLtarget

is the distribution of source domain data in Ltarget.
Our goal is to develop an approach with the above given data
to improve the performance of a model on Dtarget.

Approach Overview. Figure 2 illustrates an overview of
our approach. Our framework consists of a feature extrac-
tor G, a classifier network F , a domain discriminator D and
a selector network H. Our goal is to improve classification
performance of the combined network F(G(.)) on Dtarget.
While the feature extractor G maps the images to a common
latent space, the task of classifier F is to output a probabil-
ity distribution over the classes for a given feature from G.
Given a feature from G, the discriminator D helps in min-
imizing domain discrepancy by identifying the domain (ei-
ther source or target) to which it belongs. The selector net-
work H helps in reducing negative transfer by learning to
identify outlier source samples from Dsource using Gumbel-
Softmax sampling (Jang, Gu, and Poole 2016). On the other
hand, label module utilizes predictions of F(G(.)) to obtain
soft pseudo-labels for target samples. Finally, the mix mod-
ule leverages both pseudo-labeled target samples and source
samples to generate augmented images for achieving do-
main invariance in the latent space. During training, for a
mini-batch of images, all the components are trained jointly
and during testing, we evaluate performance using classifi-

cation accuracy of the network F(G(.)) on target domain
data Dtarget. The individual modules are discussed below.

Select Module. This module stands in the core of our frame-
work with an aim to get rid of the outlier source samples in
order to minimize negative transfer. Instead of using differ-
ent heuristically designed criteria for weighting source sam-
ples, we develop a novel selector network H, that takes im-
ages from the source domain as input and makes instance-
level binary predictions to obtain relevant source samples
for adaptation, as shown in Figure 3. Specifically, the se-
lector network H provides a discrete binary output of ei-
ther a 0 (discard) or 1 (select) for each source sample, i.e.,
H : Dsource→{0, 1}. We leverage Gumbel-Softmax opera-
tion to design the learning protocol of the selector network,
as described next. Given the selection, we forward only the
selected samples to the successive modules.

Training using Gumbel-Softmax Sampling. Our se-
lect module makes decisions about whether a source sam-
ple belongs to an outlier class or not. However, the fact
that the decision policy is discrete makes the network non-
differentiable and therefore difficult to optimize via stan-
dard backpropagation. To resolve the non-differentiability
and enable gradient descent optimization for the selector
in an efficient way, we adopt Gumbel-Softmax trick (Jang,
Gu, and Poole 2016; Maddison, Mnih, and Teh 2016)
and draw samples from a categorical distribution param-
eterized by α0, α1, where α0, α1 are the output logits
of the selector network for a sample to be selected and
discarded respectively. Specifically, as illustrated in Fig-
ure 3, the selector network H takes a batch of source
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Figure 3: Learning with Gumbel Softmax Sampling. The figure
illustrates the Gumbel-Softmax trick used for enabling gradient-
based optimization for discrete output space. Best viewed in color.

images (say, Bs of size b) as input, and outputs a two-
dimensional matrix β ∈ Rb×2, where each row corre-
sponds to [α0, α1] for an image. We then draw i.i.d. sam-
ples G0, G1 from Gumbel(0, 1) = −log(−log(U)), where
U ∼ Uniform[0, 1] and generate discrete samples in the for-
ward pass as: X = argmaxi[logαi + Gi] resulting in hard
binary predictions, while during backward pass, we approx-
imate gradients using continuous softmax relaxation as:

Yi =
exp((logαi+Gi)/τ)∑

j∈{0,1} exp((logαj+Gj)/τ)
for i∈{0, 1} (1)

where Gi’s are i.i.d samples from standard Gumbel distri-
bution Gumbel(0, 1) and τ denotes temperature of softmax.
Clearly, when τ > 0, the Gumbel-Softmax distribution is
smooth and hence gradients can be computed with respect
to logits αi’s to train the selector network using backpropa-
gation. As τ approaches 0, Yi becomes one-hot and discrete.

Learning to Discard the Outlier Distribution. With the
unsupervised nature of this decision problem, the design of
the loss function for the selector network is challenging. We
propose a novel Hausdorff distance-based triplet loss func-
tion for the select module which ensures that the selector
network learns to distinguish between the outlier and the
non-outlier distribution in the source domain. For a given
batch of source domain images Db

source and target domain
images Db

target, each of size b, the selector results in two
subsets of source samples Db

sel = {x∈Db
source :H(x) = 1}

and Db
dis = {x ∈ Db

source : H(x) = 0}. The idea is
to pull the selected source samples Db

sel & target samples
Db

target closer while pushing discarded source samples Db
dis

& Db
target apart in the output latent feature space of G. To

achieve this, we formulate the loss function as follows:

dsel = dH(G(Db
sel),G(Db

target))

ddis = dH(G(Db
dis),G(Db

target))

Lselect = λsmax(dsel − ddis +margin, 0) + Lreg (2)

where dH(X,Y ) represents the average Hausdorff dis-
tance between the set of features X and Y . Lreg =
λreg1

∑
x∈Db

source
H(x) log(H(x)) + λreg2{

∑
p̂ lent(p̂) −

lent(p̂m)}, with lent being the entropy loss, p̂ is the Softmax
prediction of F(G(Dtarget)) and p̂m is mean prediction for
the target domain. Lreg is a regularization to restrict H from
producing trivial all-0 or all-1 outputs as well as ensuring

confident and diverse predictions by F(G(.)) for Dtarget.
Note that only Db

sel is used to train the classifier, domain
discriminator and is utilised by other modules to perform
subsequent operations. Furthermore, to avoid any interfer-
ence from the backbone feature extractor G, we use a sep-
arate feature extractor for the select module, while making
these decisions. In summary, the supervision signal for the
selector module comes from (a) the discriminator directly,
(b) through interactions with other modules via joint learn-
ing, and (c) the triplet loss using Hausdorff distance.
Label Module. While our select module helps in remov-
ing source domain outliers, it fails to guarantee the discrim-
inability of the latent space due to the absence of class-
aware information in the target domain. Specifically, given
our main objective is to improve the classification perfor-
mance on target domain samples, it becomes essential for the
classifier to learn confident decision boundaries in the target
domain. To this end, we propose a label module that pro-
vides additional self-supervision for target domain samples.
Motivated by the effectiveness of confidence guided self-
training (Zou et al. 2019), we generate soft pseudo-labels for
the target domain samples that efficiently attenuates the un-
wanted deviations caused by false and noisy one-hot pseudo-
labels. For a target domain sample xt

k ∈ Dtarget, the soft-
pseudo-label ŷtk is computed as follows:

ŷ
t(i)
k =

p(i|xt
i)

1
α∑|Lsource|

j=1 p(j|xti)
1
α

(3)

where p(j|xti) is the softmax probability of the classifier for
class j given xti as input, and α is a hyper-parameter that
controls the softness of the label. The soft pseudo-label ŷti
is then used to compute the loss Llabel for a given batch of
target samples Db

target as follows:

Llabel = Exti∈Db
target

lce(F(G(xti)), ŷti) (4)

where lce(.) represents the cross-entropy loss.
Mix Module. Learning a domain-invariant latent space is
crucial for effective adaptation of a classifier from source to
target domain. However, with limited samples per batch and
after discarding the outlier samples, it becomes even more
challenging in preventing over-fitting and learning domain
invariant representation. To mitigate this problem, we apply
MixUp (Zhang et al. 2017) on the selected source samples
and the target samples for discovering ingrained structures
in establishing domain invariance. Given Db

sel from select
module and Db

target with corresponding labels ŷt from label
module, we perform convex combinations of images belong-
ing to these two sets on pixel-level in three different ways
namely, inter-domain, intra-source domain and intra-target
domain to obtain the following sets of augmented data:

Db
inter mix = {(λxsi + (1−λ)xt

j , λyi + (1−λ)ŷtj)}
Db

intra mix s = {(λxsi + (1−λ)xs
j , λyi + (1−λ)yj)}

Db
intra mix t = {(λxti + (1−λ)xtj , λŷ

t
i + (1−λ)ŷtj)}

Db
mix = Db

inter mix ∪ Db
intra mix s ∪ Db

intra mix t (5)



where (xsi/j , yi/j) ∈ Db
sel, while xt

i/j ∈ Db
target with ŷti/j

being the corresponding soft-pseudo-labels. λ is the mix-
ratio randomly sampled from a beta distribution Beta(α, α)
for α ∈ (0,∞). We use α = 2.0 in all our experiments.
We utilize the new augmented images in training both the
classifier F and the domain discriminator D as follows:

Lmix cls = E(xi,yi)∈Db
mix
lce(F(G(xi)), yi)

Lmix dom = Exi∼Db
inter mix

[λ log(D(G(xi)))

+ (1−λ) log(1−D(G(xi)))]
+ Exi∼Db

intra mix s
log(D(G(xi)))

+ Exi∼Db
intra mix t

log(1−D(G(xi)))
Lmix = Lmix cls + Lmix dom (6)

where Lmix cls and Lmix dom represent loss for classifier
and domain discriminator respectively. Our mix strategy
with the combined loss Lmix not only helps to explore more
intrinsic structures across domains leading to an invariant
latent space, but also helps to stabilize the domain discrimi-
nator while bridging the distribution shift across domains.

Optimization Besides the above three modules that are
tailored for PDA, we use standard supervised loss on the
labeled source data and domain adversarial loss as follows:

Lsup = E(xi,yi)∈Db
sel

lce(F(G(xi)), yi)
Ladv = Exs∼Db

sel
ws log(D(G(xs)))

+ Ext∼Db
target

wt log(1−D(G(xt))) (7)

where Ladv is entropy-conditioned domain adversarial loss
with weights ws and wt for source and target domain re-
spectively (Long et al. 2018). The overall loss Ltotal is

Ltotal = Lsup + Ladv + Lselect + Llabel + Lmix (8)

where Lselect, Llabel, and Lmix are given by Equations (2),
(4), and (6) respectively. We integrate all the modules into
one framework, as shown in the Figure 2 and train the net-
work jointly for partial domain adaptation.

Experiments
Datasets. We evaluate our approach using four
datasets, namely Office31 (Saenko et al. 2010), Office-
Home (Venkateswara et al. 2017), ImageNet-Caltech
and VisDA-2017 (Peng et al. 2017). Office31 contains
4,110 images of 31 classes from three distinct domains.
Following (Chen et al. 2020), we select 10 classes shared by
Office31 and Caltech256 (Griffin, Holub, and Perona 2007)
as target categories. Office-Home is a challenging dataset
that contains images from four domains. We follow (Chen
et al. 2020) to select the first 25 categories (in alphabetic
order) in each domain as target classes. ImageNet-Caltech
is a challenging dataset that consists of two subsets, Im-
ageNet1K (I) (Russakovsky et al. 2015) and Caltech256
(C) (Griffin, Holub, and Perona 2007). While source domain
contains 1,000 and 256 classes for ImageNet and Caltech
respectively, each target domain contains only 84 classes
that are common across both domains. VisDA-2017 is a

Office31
Method A → W D → W W → D A → D D → A W → A Average

ResNet-50 76.5±0.3 99.2±0.2 97.7±0.1 87.5±0.2 87.2±0.1 84.1±0.3 88.7

DANN 62.8±0.6 71.6±0.4 65.6±0.5 65.1±0.7 78.9±0.3 79.2±0.4 70.5

CORAL 52.1±0.5 65.2±0.2 64.1±0.7 58.0±0.5 73.1±0.4 77.9±0.3 65.1

ADDA 75.7±0.2 95.4±0.2 99.9±0.1 83.4±0.2 83.6±0.1 84.3±0.1 87.0

RTN 75.3 97.1 98.3 66.9 85.6 85.7 84.8

CDAN+E 80.5±1.2 99.0±0.0 98.1±0.0 77.1±0.9 93.6±0.1 91.7±0.0 90.0

JDDA 73.5±0.6 93.1±0.3 89.3±0.2 76.4±0.4 77.6±0.1 82.8±0.2 82.1

CAN 84.4±0.0 92.0±1.4 94.7±1.7 84.9±0.9 85.6±1.0 86.4±0.8 88.0

PADA 86.3±0.4 99.3±0.1 100.0±0.0 90.4±0.1 91.3±0.2 92.6±0.1 93.3

SAN 93.9±0.5 99.3±0.5 99.4±0.1 94.3±0.3 94.2±0.4 88.7±0.4 95.0

IWAN 89.2±0.4 99.3±0.3 99.4±0.2 90.5±0.4 95.6±0.3 94.3±0.3 94.7

ETN 93.4±0.3 99.3±0.1 99.2±0.2 95.5±0.4 95.4±0.1 91.7±0.2 95.8

DRCN 88.1 100.0 100.0 86.0 95.6 95.8 94.3

RTNet 95.1±0.3 100.0±0.0 100.0±0.0 97.8±0.1 93.9±0.1 94.1±0.1 96.8

RTNetadv 96.2±0.3 100.0±0.0 100.0±0.0 97.6±0.1 92.3±0.1 95.4±0.1 96.9

BA3US 99.0±0.3 100.0±0.0 98.7±0.0 99.4±0.0 94.8±0.1 95.0±0.1 97.8

SLM (Ours) 99.8±0.2 100.0±0.0 99.8±0.3 98.7±0.0 96.1±0.1 95.9±0.0 98.4

Table 1: Performance on Office31. Numbers show the accuracy
(%) of different methods on partial domain adaptation setting. We
highlight the best and second best method on each transfer task.
While the upper section shows the results of some popular unsu-
pervised domain adaptation approaches, the lower section shows
results of existing partial domain adaptation methods.

large-scale challenging dataset with 12 categories across
2 domains: photo-realistic images or real images (R), and
synthetic 2D renderings of 3D models (S). We select the first
6 categories (in alphabetical order) in each of the domain as
the target categories(Li et al. 2020). More details about the
datasets are included in the supplementary material.
Baselines. We compare our approach with several methods
that fall into two main categories: (1) popular UDA methods
(e.g., DANN (Ganin et al. 2016), CORAL (Sun and Saenko
2016)) including recent methods like CAN (Kang et al.
2019) and SPL (Wang and Breckon 2020) which have shown
state-of-the-art performance on UDA setup, (2) existing par-
tial domain adaptation methods including PADA (Cao et al.
2018b), SAN (Cao et al. 2018a), ETN (Cao et al. 2019),
and DRCN (Li et al. 2020). We also compare with the re-
cent state-of-the-art methods, RTNet (Chen et al. 2020) that
uses reinforcement learning for source dataset selection, and
BA3US (Liang et al. 2020) which uses source samples to
augment the target domain in partial domain adaptation.
We directly quote the numbers reported in published pa-
pers (Chen et al. 2020; Li et al. 2020; Liang et al. 2020) and
use the same backbone network in our approach to make a
fair comparison with different baselines.
Implementation Details. We use ResNet-50 (He et al.
2016) as the backbone network for the feature extractor
while we use ResNet-18 for the selector network, initial-
ized with ImageNet (Russakovsky et al. 2015) pretrained
weights. In Eqn. 2 we set λs, λreg1 and λreg2 as 0.01, 10.0
and 0.1, respectively. We use a margin value of 100.0 in all
our experiments. We use gradient reversal layer (GRL) for
adversarially training the discriminator. We set τ = 1.0 in
Eqn. 1, α = 0.1 in Eqn. 3, and λ = 0.0 for the GRL as
initial values and gradually anneal τ and α down to 0 while
increase λ to 1.0 during the training, as in (Jang, Gu, and
Poole 2016). Additionally, we use label-smoothing for all
the losses for the feature extractor involving source domain
images as in (Liang, Hu, and Feng 2020; Müller, Kornblith,
and Hinton 2019), with ϵ=0.2. We use SGD for optimiza-



Office-Home
Method Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr Average

ResNet-50 47.2±0.2 66.8±0.3 76.9±0.5 57.6±0.2 58.4±0.1 62.5±0.3 59.4±0.3 40.6±0.2 75.9±0.3 65.6±0.1 49.1±0.2 75.8±0.4 61.3

DANN 43.2±0.5 61.9±0.2 72.1±0.4 52.3±0.4 53.5±0.2 57.9±0.1 47.2±0.3 35.4±0.1 70.1±0.3 61.3±0.2 37.0±0.2 71.7±0.3 55.3

CORAL 38.2±0.1 55.6±0.3 65.9±0.2 48.4±0.4 52.5±0.1 51.3±0.2 48.9±0.3 32.6±0.1 67.1±0.2 63.8±0.4 35.9±0.2 69.8±0.1 52.5

ADDA 45.2 68.8 79.2 64.6 60.0 68.3 57.6 38.9 77.5 70.3 45.2 78.3 62.8

RTN 49.4 64.3 76.2 47.6 51.7 57.7 50.4 41.5 75.5 70.2 51.8 74.8 59.3

CDAN+E 47.5 65.9 75.7 57.1 54.1 63.4 59.6 44.3 72.4 66.0 49.9 72.8 60.7

JDDA 45.8±0.4 63.9±0.2 74.1±0.3 51.8±0.2 55.2±0.3 60.3±0.2 53.7±0.2 38.3±0.1 72.6±0.2 62.5±0.1 43.3±0.3 71.3±0.1 57.7

SPL 46.4±0.0 70.5±0.6 77.2±0.0 61.0±0.0 65.2±0.0 73.2±0.0 64.3±0.0 44.7±0.0 79.1±0.0 69.5±0.0 58.0±0.0 79.8±0.0 65.7

PADA 53.2±0.2 69.5±0.1 78.6±0.1 61.7±0.2 62.7±0.3 60.9±0.1 56.4±0.5 44.6±0.2 79.3±0.1 74.2±0.1 55.1±0.3 77.4±0.2 64.5

SAN 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.2 50.2 78.7 65.3

IWAN 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6

ETN 60.4±0.3 76.5±0.2 77.2±0.3 64.3±0.1 67.5±0.3 75.8±0.2 69.3±0.1 54.2±0.1 83.7±0.2 75.6±0.3 56.7±0.2 84.5±0.3 70.5

SAFN 58.9±0.5 76.3±0.3 81.4±0.3 70.4±0.5 73.0±1.4 77.8±0.5 72.4±0.3 55.3±0.5 80.4±0.8 75.8±0.4 60.4±0.8 79.9±0.2 71.8

DRCN 54.0 76.4 83.0 62.1 64.5 71.0 70.8 49.8 80.5 77.5 59.1 79.9 69.0

RTNet 62.7±0.1 79.3±0.2 81.2±0.1 65.1±0.1 68.4±0.3 76.5±0.1 70.8±0.2 55.3±0.1 85.2±0.3 76.9±0.2 59.1±0.2 83.4±0.3 72.0

RTNetadv 63.2±0.1 80.1±0.2 80.7±0.1 66.7±0.1 69.3±0.2 77.2±0.2 71.6±0.3 53.9±0.3 84.6±0.1 77.4±0.2 57.9±0.3 85.5±0.1 72.3

BA3US 60.6±0.5 83.2±0.1 88.4±0.2 71.8±0.2 72.8±1.1 83.4±0.6 75.5±0.2 61.6±0.4 86.5±0.2 79.3±0.7 62.8±0.5 86.1±0.3 76.0

SLM (Ours) 61.1±0.7 84.0±0.7 91.4±0.3 76.5±0.1 75.0±1.2 81.8±1.2 74.6±0.7 55.6±0.7 87.8±0.8 82.3±0.5 57.8±0.8 83.5±0.6 76.0

Table 2: Performance on Office-Home. We highlight the best and second best method on each task.

tion with momentum=0.9 while a weight decay of 1e-3 and
5e-4 for the selector network and the other networks respec-
tively. We use an initial learning rate of 5e-3 for the selector
and the classifier, while 5e-4 for the rest of the networks
and decay it following a cosine annealing strategy. We use a
batch size of 64 for Office31 and VisDA-2017 while a batch
size of 128 is used for Office-Home and ImageNet-Caltech.
We report average classification accuracy and standard devi-
ation over 3 random trials. More implementation details and
source codes can be found in supplementary material. We
will make our source codes publicly available.
Results and Analysis. Table 1 shows the results of
our method and other competing approaches on Office31
dataset. We have the following key observations. (1) As
expected, the popular UDA methods including the recent
CAN (Kang et al. 2019), fail to outperform the simple no
adaptation model (ResNet-50), which implies that they suf-
fer from negative transfer due to the presence of outlier
source samples in partial domain adaptation. (2) Overall, our
SLM framework outperforms all the existing PDA methods
by achieving the best results on 4 out of 6 transfer tasks.
Among PDA methods, BA3US (Liang et al. 2020) is the
most competitive. However, SLM still outperforms it (97.8%
vs 98.4%) due to our two novel components working in con-
cert with the removal of outliers: enhancing discriminabil-
ity of the latent space via iterative pseudo-labeling of tar-
get domain samples and learning domain-invariance through
mixup regularizations. (3) Our approach performed remark-
ably well on transfer tasks where the number of source do-
main images is very small compared to the target domain,
e.g., on D→A, SLM outperforms BA3US by 1.3%.

On the challenging Office-Home dataset, our approach
obtains the best performance on 6 out of 12 transfer tasks,
with an average accuracy of 76.0% on this dataset (Table 2).
Table 3 summarizes the results on ImageNet-Caltech and
VisDA-2017 datasets. Our approach achieves new state-of-

ImageNet-Caltech VisDA-2017
Method I → C C → I Average R → S S → R Average

ResNet-50 69.7±0.8 71.3±0.7 70.5 64.3 45.3 54.8

DAN 71.6 66.5 69.0 68.4 47.6 58.0

DANN 68.7 52.9 60.8 73.8 51.0 62.4

ADDA 71.8±0.5 69.3±0.4 70.6 − − −
RTN 72.2 68.3 70.3 72.9 50.0 61.5

CDAN+E 72.5±0.1 72.0±0.1 72.2 − − −
PADA 75.0±0.4 70.5±0.4 72.8 76.5 53.5 65.0

SAN 77.8±0.4 75.3±0.4 76.5 69.7 49.9

IWAN 78.1±0.4 73.3±0.5 75.7 71.3 48.6

ETN 83.2±0.2 74.9±0.4 79.1 − − −
SAFN − − − − 67.7±0.5 −
DRCN 75.3 78.9 77.1 73.2 58.2 65.7

SLM (Ours) 82.3±0.1 81.4±0.6 81.9 77.5±0.8 91.7±0.8 84.6

Table 3: Performance on ImageNet-Caltech and VisDA-2017.

the-art result, outperforming the next competitive method
by a margin of about 2.8% and 18.9% on ImageNet-
Caltech and VisDA-2017 respectively. Especially for task
S → R on VisDA-2017, our approach significantly outper-
forms SAFN (Xu et al. 2019b) and DRCN (Li et al. 2020)
by an increase of 24.1% and 33.5% respectively. Note
that on the most challenging VisDA-2017 dataset, our ap-
proach is still able to distill more positive knowledge from
the synthetic to the real domain despite significant domain
gap across them. In summary, our SLM framework outper-
forms the existing PDA methods on all four datasets, show-
ing the effectiveness of our approach in not only identify-
ing the most relevant source classes but also learning more
transferable features for partial domain adaptation.

Ablation Studies. We perform the following experiments to
test the effectiveness of the proposed modules including the
effect of number of target classes on different datasets.

Effectiveness of Individual Modules. We conduct ex-
periments to investigate the importance of our three unique



Modules Dataset
Select Label Mix Office-31 Office-Home VisDA-2017

✗ ✗ ✗ 89.3 57.7 57.0

✓ ✗ ✗ 94.9 65.8 68.7

✓ ✓ ✗ 96.0 73.2 81.0

✓ ✓ ✓ 98.4 76.0 84.6

Table 4: Effectiveness of Different Modules.

Figure 4: Performance by varying the number of target classes on
A→W task from Office31 dataset. Best viewed in color.

modules on three datasets. E.g. On Office-Home, as seen
from Table 9, while the Select only module improves the
vanilla performance by 8%, addition of Label and Mix mod-
ules progressively improves the result to obtain the best per-
formance of 76.0%. This corroborates the fact that both dis-
criminability and invariance of the latent space plays a cru-
cial role in partial domain adaptation in addition to the re-
moval of source domain outlier samples.

Comparison with Varying Number of Target Classes.
We compare different methods by varying the number of tar-
get classes. Figure 4 shows that our SLM framework con-
sistently obtains the best results indicating its advantage in
alleviating negative transfer by removing outlier source sam-
ples. Moreover, our approach outperforms all the compared
methods even in the case of completely shared space (A31
→ W31), which shows that it does not discard relevant sam-
ples incorrectly when there are no outlier classes.

Effectiveness of Hausdorff Distance. We investigate the
effect of Hausdorff distance (Eqn. 2) in selector network
training and find that removing it lowers down the perfor-
mance from 76.0% to 73.7% on Office-Home dataset, show-
ing its importance in guiding the selector network to discard
the outlier source samples for reduction in negative transfer.

Distance between Domains. Following (Chen et al.
2020), we compute the Wasserstein distance between the
probability distribution of the target samples (T) with that of
the selected (Ssel) and discarded samples (Sdis) by the se-
lector network. Table 5 shows that dist(Ssel,T) is smaller
than dist(Sall,T), while dist(Sdis,T) is greater than
dist(Sall,T) on two randomly sampled adaptation tasks
from Office31 and Office-Home datasets. This results in-
dicate that the samples selected by our selector network is
closer to the target domain while the discarded samples are
very dissimilar to the target domain.

Effectiveness of Soft Pseudo-Labels. We also test the
effectiveness of soft pseudo-labels by replacing them with

Distance A → D W → A Cl → Pr Rw → Pr
dist(Ssel, T) 0.999 0.893 0.819 0.947

dist(Sdis, T) 1.013 1.144 1.418 1.008

Table 5: Wasserstein Distance between Domains. The values are
normalized by assuming dist(Sall,T) to be equal to 1.000, where
Sall represents all source samples for the corresponding tasks.

Vanilla Select Select + Label Select + Label + Mix (SLM)

Figure 5: t-SNE Visualizations for A→W task from Office-31.
Blue and red dots represent source and target data respectively.

hard pseudo-labels for the target samples and observe that
the average performance decreases from 76.0% to 72.0% on
Office-Home dataset. This confirms that soft pseudo-labels
are critical in attenuating the unwanted deviations caused by
the false and noisy hard pseudo-labels.

Effectiveness of Different Mixup. With mixup regular-
izations working for both discriminator and classifier, the
average performance on Office-Home dataset is 76.0%. By
removing mixup regularization from the training of domain
discriminator, the performance decreases to 73.6%. Simi-
larly, by removing mixup regularization from the classifier
training, the average performance becomes 73.9%. This cor-
roborates the fact that our Mix strategy not only helps to ex-
plore intrinsic structures across domains, but also helps to
stabilize the domain discriminator.
Feature Visualizations. We use t-SNE (Maaten and Hinton
2008) to visualize the features learned using different com-
ponents of our SLM framework. We choose an UDA setup
(similar to DANN (Ganin et al. 2016)) as a vanilla method
and add different modules one-by-one to visualize their in-
dividual contribution in learning discriminative features for
partial domain adaptation. As seen from Figure 5, the feature
space for vanilla setup lacks dicriminability for both source
and target features. The discriminability improves for both
source as well as target features as we add “Select” and “La-
bel” to the Vanilla setup. The best results are obtained when
all three modules “Select”, “Label” and “Mix” i.e., SLM are
added and trained jointly in an end-to-end manner. More vi-
sualizations including additional results with different back-
bones are included in supplementary material.

Conclusion
In this paper, we propose an end-to-end framework for learn-
ing discriminative invariant feature representation while pre-
venting negative transfer in partial domain adaptation. While
our select module facilitates the identification of relevant
source samples for adaptation, the label module enhances
the discriminability of the latent space by utilizing pseudo-
labels for the target domain samples. The mix module uses
mixup regularizations jointly with the other two strategies to
enforce domain invariance in latent space. We demonstrate
the effectiveness of our approach on four standard datasets,
outperforming several competing methods.
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Table 6: Overview of Supplementary Material.

Dataset Details
We evaluate the performance of our approach on several
benchmark datasets for partial domain adaptation, namely
Office31 (Saenko et al. 2010), Office-Home (Venkateswara
et al. 2017), ImageNet-Caltech and VisDA-2017 (Peng et al.
2017). The following are the detailed descriptions of the
above datasets:
Office31. This dataset contains 4,110 images distributed
among 31 different classes and collected from three dif-
ferent domains: Amazon (A), Webcam (W) and DSLR
(D), resulting in 6 transfer tasks. The dataset is imbalanced
across domains with 2,817 images belonging to Amazon,
795 images to Webcam, and 498 images to DSLR, making
Amazon a larger domain as compared to Webcam and
DSLR. For all our experiments, we select the 10 classes
shared by Office31 and Caltech256 (Griffin, Holub, and
Perona 2007) as the target categories and obtain the follow-
ing label spaces:
Lsource = {0, 1, 2, ..., 30}.
Ltarget = {0, 1, 5, 10, 11, 12, 15, 16, 17, 22}.
Number of Outlier Classes = 21.
Figure 6 shows few randomly sampled images from this
dataset. The dataset is publicly available to download at:
https://people.eecs.berkeley.edu/∼jhoffman/domainadapt/
#datasets code.

A
m
a
z
o
n

D
s
l
r

W
e
b
c
a
m

Figure 6: Sampled Images from Office31 Dataset. Each row
from top to bottom corresponds to the domains Amazon, Dslr and
Webcam, respectively. The images in the same column belong to
the same class. Best viewed in color.

Office-Home. This dataset contains 15,588 images dis-
tributed among 65 different classes and collected from four
different domains: Art (Ar), Clipart (Cl), Product (Pr), and
RealWorld (Rw), resulting in 12 transfer tasks. The dataset
is split across domains with 2427 images belonging to Art,
4365 images to Clipart, 4439 images to Product, and 4347
images to RealWorld. We select the first 25 categories (in
alphabetic order) in each domain as the target classes and
obtain the following label spaces:
Lsource = {0, 1, 2, ..., 64}.

Ltarget = {0, 1, 2, ..., 24}.
Number of Outlier Classes = 40.
Figure 7 displays a gallery of sample images for this
dataset. The dataset is publicly available to download at:
http://hemanthdv.org/OfficeHome-Dataset/.
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Figure 7: Sampled Images from Office-Home Dataset. Each
row from top to bottom corresponds to the domains Art, Clipart,
Product and RealWorld, respectively. The images in the same col-
umn belong to the same class. Best viewed in color.

ImageNet-Caltech. This large-scale dataset consists of two
datasets (ImageNet1K (Russakovsky et al. 2015) (I) & Cal-
tech256 (Griffin, Holub, and Perona 2007) (C)) as two sep-
arate domains and consist of over 14 million images com-
bined. 2 transfer tasks are formed for this dataset. While
source domain contains 1,000 and 256 classes for ImageNet
and Caltech respectively, each target domain contains only
84 classes that are common across both domains. As it is a
general practice to use ImageNet pretrained weights for net-
work initialization, we use the validation set images when
using ImageNet as the target domain. Number of Outlier
Classes = 172 for C→I, 916 for I→C. Figure 8 displays
a gallery of sample images for this dataset. The datasets
are publicly available to download at: http://www.image-
net.org/
http://www.vision.caltech.edu/Image Datasets/Caltech256/.

VisDA-2017. This dataset contains 280,157 images dis-
tributed among 12 different classes and two domains. The
dataset contains three sets of images: training, validation and
testing. The training set contains 152,397 synthetic (S) im-
ages, the validation set contains 55,388 real-world (R) im-
ages, while the test set contains 72,372 real-world images.
For the experiments, the training set is considered as the
Synthetic (S) domain, while the validation set as the Real (R)
domain, following (Li et al. 2020). This results in 2 transfer
tasks. The first 6 categories (in alphabetical order) are se-
lected in each of the domains as the target classes, and the
following label spaces are obtained:
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Figure 8: Sampled Images from ImageNet-Caltech Dataset.
The top row corresponds to the ImageNet domain, while the bot-
tom row to the Caltech domain. The images in the same column
belong to the same class. Best viewed in color.
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Figure 9: Sampled Images from VisDA-2017 Dataset. The top
row corresponds to the Synthetic domain, while the bottom row to
the Real domain. The images in the same column belong to the
same class. Best viewed in color.

Lsource = {0, 1, 2, ..., 11}.
Ltarget = {0, 1, 2, ..., 5}.
Number of Outlier Classes = 6.
Figure 9 displays a gallery of sample images for this dataset.
The dataset is publicly available to download at:
http://ai.bu.edu/visda-2017/#download.

Implementation Details
The training pipeline pseudo-code for SLM is shown in Al-
gorithm 1. Following are the detailed description of the
implementation we follow for various components of the
framework:

Algorithm 1: The training pipeline for SLM
Data: source data Dsource and target data Dtarget.
Networks: Selector Network H(.), Feature Extrac-
tor G(.), Classifier F(.), and Domain Discriminator
D(.).

1: Initialize networks G(.), F(.), H(.), and D(.) in SLM .
2: for itrn = 1 → num itrn do
3: Obtain the mini-batches Db

source and Db
target.

# “Select” Module
4: Obtain the binary decisions from H(Db

source) and use
them to obtain Db

sel and Db
dis.

# “Label” Module
5: Obtain soft pseudo-labels ŷb from F(G(Dtarget)) for

Dtarget.
# “Mix” Module

6: Obtain Db
inter mix, Db

intra mix s, and Db
intra mix t.

7: Compute Lsup, Ladv , Lselect, Llabel, and Lmix.
8: Compute the gradients and backpropagate for opti-

mization using gradient descent.
9: end for

Feature Extractor (G). We use ResNet-50 (He et al.
2016) backbone for the feature extractor. The overall struc-
ture of ResNet-50 is Initial Layers, Layer-1,
Layer-2, Layer-3, Layer-4, AvgPool, Fc.
The model is initialized with ImageNet (Russakovsky et al.
2015) pretrained weights. Additionally, we add a bottleneck
layer of width 256 just after the AvgPool layer to obtain
the features and replace all the BatchNorm layers with
Domain-Specific Batch-Normalization (Chang et al. 2019)
layers. All the layers till Layer-3 are frozen and only the
rest of the layers are fine-tuned.
Selector Network (H). We use a ResNet-18 (He et al. 2016)
network with the Fc layer replaced with a binary-length
fully connected layer as the selector network in our frame-

work. The network is initialized with ImageNet pretrained
weights and all the layers are trained while optimization.
Classifier (F). The final Fc layer of ResNet-50 described
above is replaced with a task-specific fully-connected layer
to form the classifier network of our framework.
Domain Discriminator (D). A three-layer fully-connected
network is used as the domain discriminator network. It
takes the 256-length features obtained from the feature ex-
tractor as input. The adversarial training is incorporated us-
ing a gradient reversal layer (GRL).
Hyperparameters. All the networks are optimised using
mini-batch stochastic gradient descent with a momentum of
0.9. A batch size of 64 is used for Office31 and VisDA-
2017 while a batch size of 128 is used for Office-Home
and ImageNet-Caltech. For feature extractor an initial learn-
ing rate of 5e-5 for the convolutional layers while an ini-
tial learning rate of 5e-4 for all the fully-connected layers is
used. For the selector network and the domain discriminator
an initial learning rate of 5e-3 and 5e-4 are used respectively.
The learning rates are decayed following a cosine-annealing
strategy as the training progresses. The best models are cap-
tured by obtaining the performance on a validation set. We
do NOT follow the ten-crop technique (Cao et al. 2018b,
2019), to improve the performance in the inference phase.
We obtain the best hyperparameters using grid search. All
the experiments were averaged over three runs, which used
random seed values of 1, 2, and 3 respectively.
Hardware and Software Details. All the experiments were
conducted using a single NVIDIA Tesla V100-DGXS
GPU with 32 GigaBytes of memory, equipped
with a Intel(R) Xeon(R) CPU E5-2698 v4
@ 2.20GHz. We used PyTorch v1.4.0, Python v3.6.10 to
implement the codes.

Additional Experimental Results
Effectiveness on Different Backbone Networks. To show
that the proposed framework is backbone-agnostic, i.e., it
provides the best performance irrespective of the architec-
ture of the feature extractor, we conduct experiments using a
VGG-16 (Simonyan and Zisserman 2015) backbone for the
feature extractor. We report the results on the transfer tasks
from the Office31 dataset in Table 7 and compare it with the
current state-of-the-art methods. Our method outperforms
the previously best results by a margin of 3.0% on aver-
age and achieves new state-of-the-art results. This confirms
that our proposed framework for partial domain adaptation
is robust with respect to the change of backbone network.
Effectiveness of Individual Modules. In Section 4.3 of the
main paper, we discussed the importance of the proposed
three unique modules on three datasets and provided the av-
erage accuracies for wach of them. Here, we provide the
performance on the individual transfer tasks for those three
datasets, namely Office-31, VisDA-2017, and Office-Home
in Tables 8 and 9. Our approach with all the three modules
(Select, Label and Mix) working jointly, works the best on
all the three datasets.
Effectiveness of Hausdorff Distance. In Section 4.3 of the



Office31
Method A → W D → W W → D A → D D → A W → A Average

VGG-16 (Simonyan and Zisserman 2015) (ICLR’15) 60.3±0.8 98.0±0.6 99.4±0.4 76.4±0.5 73.0±0.6 79.1±0.5 81.0

PADA (Cao et al. 2018b) (ECCV’18) 86.1±0.4 100.0±0.0 100.0±0.0 81.7±0.3 93.0±0.2 95.3±0.3 92.5

SAN (Cao et al. 2018a) (CVPR’18) 83.4±0.4 99.3±0.5 100.0±0.0 90.7±0.2 87.2±0.2 91.9±0.4 92.1

IWAN (Zhang et al. 2018) (CVPR’18) 82.9±0.3 79.8±0.3 88.5±0.2 91.0±0.3 89.6±0.2 93.4±0.2 87.5

ETN (Cao et al. 2019) (CVPR’19) 85.7±0.2 100.0±0.0 100.0±0.0 89.4±0.2 95.9±0.2 92.3±0.2 93.9

SLM (Ours) 92.0±0.1 99.8±0.2 99.6±0.5 98.1±0.0 96.1±0.0 96.0±0.1 96.9

Table 7: Performance on Office31 with VGG-16 backbone. Numbers show the accuracy (%) of different methods on partial domain
adaptation setting. We highlight the best and second best method on each transfer task. Our proposed framework, SLM achieves the best
performance on 4 out of 6 transfer tasks including the best average performance among all compared methods.

Modules Office31 VisDA-2017
Select Label Mix A → W D → W W → D A → D D → A W → A Average R → S S → R Average

✗ ✗ ✗ 88.0 98.3 95.8 88.8 84.5 80.2 89.3 57.7 56.4 57.0

✓ ✗ ✗ 91.8 99.3 96.6 93.8 94.2 93.5 94.9 69.0 68.4 68.7

✓ ✓ ✗ 92.4 99.9 99.2 94.9 95.5 93.8 96.0 77.2 84.8 81.0

✓ ✓ ✓ 99.8 100.0 99.8 98.7 96.1 95.9 98.4 77.5 91.7 84.6

Table 8: Effectiveness of Different Modules on Office31 and VisDA-2017 Datasets. Our proposed approach achieves the best performance
with all the modules working jointly for learning discriminative invariant features in partial domain adaptation.

Modules Office-Home
Select Label Mix Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Pr → Cl Pr → Rw Average

✗ ✗ ✗ 44.2 61.6 75.9 54.6 55.2 65.0 51.0 37.3 69.6 64.8 42.4 71.4 57.7

✓ ✗ ✗ 50.6 72.9 79.2 65.4 67.2 71.7 60.8 46.7 77.0 71.9 49.4 77.0 65.8

✓ ✓ ✗ 56.1 82.4 89.8 74.2 73.0 81.6 70.8 48.4 87.0 80.1 53.1 81.7 73.2

✓ ✓ ✓ 61.1 84.0 91.4 76.5 75.0 81.8 74.6 55.6 87.8 82.3 57.8 83.5 76.0

Table 9: Effectiveness of Different Modules on Office-Home Dataset. Our proposed approach achieves the best performance with all the
modules working jointly for learning discriminative invariant features in partial domain adaptation.



main paper, we discussed the importance of Hausdorff Dis-
tance loss in guiding the selector network to discard the out-
lier source samples. Here we provide the individual perfor-
mance of all the transfer tasks on Office-Home dataset in
Table 10, which shows that our approach with Hausdorff dis-
tance loss works the best in all cases.
Effectiveness of Soft Pseudo-Labels. As discussed in the
Section 4.3, we confirmed the importance of soft pseudo-
labels for our framework as it attenuates the unwanted devi-
ations because of noisy and false hard pseudo-labels. Here,
we provide the performance on each of the transfer tasks
from Office-Home in Table 11.
Effectiveness of Different MixUp. We examined the effect
of mixup regularization on both domain discriminator and
classifier separately in Section 4.3 of the main paper. We
concluded that our Mix strategy not only helps to explore in-
trinsic structures across domains, but also helps to stabilize
the domain discriminator. Here, we provide the correspond-
ing performance on each of the transfer tasks of Office-
Home in Table 12.

Qualitative Results
Feature Visualizations. We provide some additional fea-
ture visualizations using t-SNE (Maaten and Hinton 2008)
in Figure 10. Similar to Section 4.4 in the main paper, we
choose an UDA setup as a vanilla method and add the pro-
posed modules one-by-one to visualize the contribution of
each of the modules in learning discriminative features for
partial domain adaptation.

Limitations and Broader Impact
Our research can help reduce burden of collecting large-
scale supervised data in many real-world applications of vi-
sual classification by transferring knowledge from models
trained on large broad datasets to specific datasets possess-
ing a domain shift. This scenario is quite common as large
datasets (e.g. ImageNet (Russakovsky et al. 2015)) can be
used for training which contain a broader range of categories
while our goal can be to transfer the knowledge to smaller
datasets with a smaller number of categories. The positive
impact that our work could have on society is in making
technology more accessible for institutions and individuals
that do not have rich resources for annotating newly col-
lected datasets. Negative impacts of our research are difficult
to predict, however, it shares many of the pitfalls associated
with standard deep learning models such as susceptibility to
adversarial attacks and lack of interpretablity.



Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Pr → Cl Pr → Rw Average

W/o Hausdorff Loss 56.2 83.1 90.3 72.6 71.5 80.8 71.4 51.6 84.8 82.5 57.5 81.7 73.7

Ours (SLM ) 61.1 84.0 91.4 76.5 75.0 81.8 74.6 55.6 87.8 82.3 57.8 83.5 76.0

Table 10: Effectiveness of Hausdorff Triplet Loss on Office-Home Dataset. The table shows the performance of the framework without
(top-row) and with (bottom-row) the inclusion of the Hausdorff distance triplet loss. The results highlight the importance of the Hausdorff
distance loss in our proposed framework.

Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Pr → Cl Pr → Rw Average

W/ Hard Pseudo-labels 52.5 79.9 90.2 73.5 72.6 78.2 69.9 47.5 87.5 78.6 50.6 82.7 72.0

Ours (SLM ) 61.1 84.0 91.4 76.5 75.0 81.8 74.6 55.6 87.8 82.3 57.8 83.5 76.0

Table 11: Effectiveness of Soft Pseudo-labels on Office-Home Dataset. Table shows the performance of the framework when we replace
the soft pseudo-labels with hard pseudo-labels (top-row) for the target samples. The results justify that the soft pseudo-labels are critical for
our framework and attenuate unwanted deviations caused by hard pseudo-labels.

Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Pr → Cl Pr → Rw Average

No Domain Discriminator MixUp 56.2 81.5 90.0 74.0 71.8 80.3 72.2 50.9 86.3 79.8 58.0 82.0 73.6

No Classifier MixUp 57.8 82.9 88.5 75.1 73.6 79.3 69.0 54.9 86.6 79.8 57.6 81.2 73.9

Ours (SLM ) 61.1 84.0 91.4 76.5 75.0 81.8 74.6 55.6 87.8 82.3 57.8 83.5 76.0

Table 12: Effectiveness of Different MixUp on Office-Home Dataset. The table shows the performance of the framework with the exclusion
of mixup regularization from the domain discriminator (top-row) and the classsifier (middle-row). The final row shows the results of the
proposed SLM framework, which provides the best performance confirming the importance of our Mix strategy.

Vanilla Select Select + Label Select + Label + Mix (SLM )

Vanilla Select Select + Label Select + Label + Mix (SLM )

Vanilla Select Select + Label Select + Label + Mix (SLM )

Figure 10: Feature Visualizations using t-SNE. Plots show visualization of our approach with different modules on A→W, W→A, and
D→A tasks repectively (top to down) from Office31 dataset. Blue and red dots represent source and target data respectively. As can be seen,
features for both target as well as source domain become progressively discriminative and improve from left to right by adoption of our
proposed modules. Best viewed in color.


